Search results

1 – 10 of 406
Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 April 2024

Xiaohan Kong, Shuli Yin, Yunyi Gong and Hajime Igarashi

The prolonged training time of the neural network (NN) has sparked considerable debate regarding their application in the field of optimization. The purpose of this paper is to…

Abstract

Purpose

The prolonged training time of the neural network (NN) has sparked considerable debate regarding their application in the field of optimization. The purpose of this paper is to explore the beneficial assistance of NN-based alternative models in inductance design, with a particular focus on multi-objective optimization and uncertainty analysis processes.

Design/methodology/approach

Under Gaussian-distributed manufacturing errors, this study predicts error intervals for Pareto points and select robust solutions with minimal error margins. Furthermore, this study establishes correlations between manufacturing errors and inductance value discrepancies, offering a practical means of determining permissible manufacturing errors tailored to varying accuracy requirements.

Findings

The NN-assisted methods are demonstrated to offer a substantial time advantage in multi-objective optimization compared to conventional approaches, particularly in scenarios where the trained NN is repeatedly used. Also, NN models allow for extensive data-driven uncertainty quantification, which is challenging for traditional methods.

Originality/value

Three objectives including saturation current are considered in the multi-optimization, and the time advantages of the NN are thoroughly discussed by comparing scenarios involving single optimization, multiple optimizations, bi-objective optimization and tri-objective optimization. This study proposes direct error interval prediction on the Pareto front, using extensive data to predict the response of the Pareto front to random errors following a Gaussian distribution. This approach circumvents the compromises inherent in constrained robust optimization for inductance design and allows for a direct assessment of robustness that can be applied to account for manufacturing errors with complex distributions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 May 2024

Emanuela Caracuzzo, Andrea Caputo, Antonino Callea, Claudio Giovanni Cortese and Flavio Urbini

Playful work design (PWD) is a set of proactive strategies implementing fun and self-challenge at work to actively create better work conditions. Following the job…

Abstract

Purpose

Playful work design (PWD) is a set of proactive strategies implementing fun and self-challenge at work to actively create better work conditions. Following the job demands-resources theory, this study aims to investigate the effects of PWD’s dimensions – i.e. “designing fun” and “designing competition” – on task and contextual performance (Study 1) and on the dimensions of organizational citizenship behaviors (OCBs) – i.e. altruism, conscientiousness and civic virtue (Study 2). Furthermore, the present research investigates the mediating role of work engagement (WE) for both studies.

Design/methodology/approach

Two samples of 339 and 141 Italian workers participated by filling in a self-report questionnaire. Measuring models and hypotheses have been tested by structural equation models.

Findings

Results suggest that WE partially mediates the relationship of the “designing competition” subdimension of PWD with task and contextual performance (Study 1) and with conscientiousness and civic virtue of OCBs, while “designing fun” shows a positive direct relationship only with altruism (Study 2).

Originality/value

This paper contributes to expanding knowledge about PWD’s effectiveness in facilitating performance and positive behaviors. Furthermore, it disentangles the different effects of PWD’s dimensions on performance. In light of the results, both employees and managers should be aware of the beneficial consequences of introducing fun and self-competitiveness when completing their own work activities.

Details

Management Research Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8269

Keywords

Article
Publication date: 24 April 2024

Yuhong Li, Hang Gao and Xiaokun Yu

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database…

Abstract

Purpose

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database can also be continuously filled according to the existing logic to realize the diversity of design. Improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. And verify the feasibility of the simulation software to assist pleated clothing design.

Design/methodology/approach

Firstly, according to the logical framework of origami theory, different innovative designs and combined designs are made for the basic units of hyperbolic paraboloid, and the element library that can be used for design is systematically summarized. This database can also be continuously filled according to the existing logic to realize the diversity of design. Secondly, it summarizes three methods of pleated element filling clothing – uniform filling method, the irregular filling method and geometric addition method – that improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. Finally, the virtual software is used to simulate the effect of pleated clothing, and the three-dimensional simulation software 3dclo is used to make an empirical study on the application of hyperbolic paraboloid origami in clothing pleated design to verify the feasibility of the simulation software to assist pleated clothing design.

Findings

The theoretical results of hyperbolic paraboloid origami are collected and arranged to establish the element library of hyperbolic paraboloid origami. The results expand the designer's design ideas and auxiliary design technology and improve the design efficiency using a sample of hyperbolic paraboloid fabric to verify its practicability and three-dimensional clothing simulation software for exploring the design. The design rules of hyperbolic paraboloid clothing and the realization method of fabric are summarized, including the expansion and combing of elements, the application of size and shape and the method of combination.

Research limitations/implications

Owing to the hyperbolic paraboloid origami’s length shrinkage, the loose computation of clothing requires targeted computation. This paper solely applies a paper model for estimating the shrinkage, and then we tend to subsequently explore the way to precisely compute the porosity, to determine the existing differences in the two-dimensional shrinkage of hyperbolic paraboloid creases of varying materials and to know if the clothing after large-scale production is capable of reaching the anticipated value.

Practical implications

The exploration of this experiment brings a new 3D experiment process to the design process.

Social implications

This experiment brings new possibilities for the development of virtual fitting and virtual display in the industry.

Originality/value

This study combines hyperbolic paraboloid origami and clothing and combs and expands the unit with logical thinking to expand the designer's design ideas.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 April 2024

Linda Brennan, David Micallef, Eva L. Jenkins, Lukas Parker and Natalia Alessi

This study aims to explore the use of a double diamond design method to engage the industry in a sector-wide response to the issues of food waste as constructed by consumers. This…

Abstract

Purpose

This study aims to explore the use of a double diamond design method to engage the industry in a sector-wide response to the issues of food waste as constructed by consumers. This particular design method is achieved by an exploration of a collective intelligence-participatory design (CIPD) project to engage industry participants in understanding and responding to consumers’ perceptions of the role of packaging in reducing food waste.

Design/methodology/approach

Using the UK Design Council’s double diamond design method as a guiding conceptual principle, the project recruited industry participants from medium to large food businesses across various food categories. Two scoping workshops with industry were held prior to the initiation of a 12-stage project (n = 57), and then two industry workshops were held (n = 4 and 14). Eighty participants completed an online qualitative survey, and 23 industry participants took part in a Think Tank Sprint Series. The Think Tanks used participatory design approaches to understand barriers and opportunities for change within food industry sub-sectors and test the feasibility and acceptability of package designs to reduce consumer waste.

Findings

For CIPD to work for complex problems involving industry, it is vital that stakeholders across macro- and micro-subsystems are involved and that adequate time is allowed to address that complexity. Using both the right tools for engagement and the involvement of the right mix of representatives across various sectors of industry is critical to reducing blame shift. The process of divergence and convergence allowed clear insight into the long-term multi-pronged approach needed for the complex problem.

Originality/value

Participatory design has been useful within various behaviour change settings. This paper has demonstrated the application of the double diamond model in a social marketing setting, adding value to an industry-wide project that included government, peak bodies, manufacturing and production and retailers.

Details

Journal of Social Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6763

Keywords

Article
Publication date: 24 April 2024

Zhihong Tan, Ling Yuan, Junli Wang and Qunchao Wan

This study aims to investigate the negative interpersonal antecedents, emotional mediators and boundary conditions of knowledge sabotage behavior.

Abstract

Purpose

This study aims to investigate the negative interpersonal antecedents, emotional mediators and boundary conditions of knowledge sabotage behavior.

Design/methodology/approach

The authors collected data from 275 Chinese employees using convenience sampling and snowball sampling across three stages. Subsequently, the authors used both hierarchical regression and bootstrap methods to test the proposed hypotheses.

Findings

The results confirmed that workplace ostracism has positive effects on employee knowledge sabotage behavior both directly and via employee anger. In addition, the authors found that employee bottom-line mentality (BLM) moderates not only the direct effect of workplace ostracism on employee anger but also the indirect effect of employee anger in this context. Employee conscientiousness moderates only the direct effect of workplace ostracism on employee anger and does not moderate the indirect effect.

Originality/value

To the best of the authors’ knowledge, this study not only explores the influence of workplace ostracism on employee knowledge sabotage behavior for the first time but also elucidates the underlying emotional mechanisms (anger) and boundary conditions (employee BLM and conscientiousness) by which workplace ostracism influences employee knowledge sabotage behavior, thus deepening the understanding of how knowledge sabotage emerges in organizations.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 26 April 2024

Shahla M. Wunderlich and Charles H. Feldman

The purpose of this short communication is to shed light on the accuracy of quantification methods of household food waste (HFW).

Abstract

Purpose

The purpose of this short communication is to shed light on the accuracy of quantification methods of household food waste (HFW).

Design/methodology/approach

Thirty-seven recently published studies in HFW were surveyed for this commentary. Exemplary methods and findings of these studies were compared.

Findings

It is challenging to draw conclusions on the amount of the HFW per person/town/country due to the inconsistent and heterogeneous methodologies used. We recommend using direct measurements or triangulation of methods to help ensure valid findings. Governments should incentivize consumers to deliver their food waste to designated locations where weights could accurately be assessed. Monetary or tax incentives could help stimulate an accurate accounting of waste and encourage reductions. Food waste measurements should be consistently reported as kg/person/week.

Social implications

Food and water security must be provided for all. It is estimated that one-third of edible food for humans is currently lost or wasted globally. According to the World Food Program (WFP), this is about 1.3 billion tons of food per year and at the same time this wasted food could be sufficient to feed two billion people.

Originality/value

The aim of this paper is to fill a gap in the literature about the magnitude and significance of HFW and its impact on the environment and social welfare. Currently, there are no generally accepted uniform methods of food waste quantification at the household level. This original communication brings the importance and challenges of the quantification of HFW to light.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 2 May 2024

Xin Fan, Yongshou Liu, Zongyi Gu and Qin Yao

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional…

Abstract

Purpose

Ensuring the safety of structures is important. However, when a structure possesses both an implicit performance function and an extremely small failure probability, traditional methods struggle to conduct a reliability analysis. Therefore, this paper proposes a reliability analysis method aimed at enhancing the efficiency of rare event analysis, using the widely recognized Relevant Vector Machine (RVM).

Design/methodology/approach

Drawing from the principles of importance sampling (IS), this paper employs Harris Hawks Optimization (HHO) to ascertain the optimal design point. This approach not only guarantees precision but also facilitates the RVM in approximating the limit state surface. When the U learning function, designed for Kriging, is applied to RVM, it results in sample clustering in the design of experiment (DoE). Therefore, this paper proposes a FU learning function, which is more suitable for RVM.

Findings

Three numerical examples and two engineering problem demonstrate the effectiveness of the proposed method.

Originality/value

By employing the HHO algorithm, this paper innovatively applies RVM in IS reliability analysis, proposing a novel method termed RVM-HIS. The RVM-HIS demonstrates exceptional computational efficiency, making it eminently suitable for rare events reliability analysis with implicit performance function. Moreover, the computational efficiency of RVM-HIS has been significantly enhanced through the improvement of the U learning function.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 30 April 2024

Sadia Iddik

The purpose of this study is to contribute to the debate on the impact of organizational culture and national culture on green supply chain management (GSCM) adoption by…

Abstract

Purpose

The purpose of this study is to contribute to the debate on the impact of organizational culture and national culture on green supply chain management (GSCM) adoption by empirically testing the developed framework, and ultimately pave the way toward potential areas for future research.

Design/methodology/approach

Using survey data from a sample of Moroccan manufacturing firms, 130 responses were collected and analyzed using SPSS 25 and Smart PLS v 3.3.3 software. The paper used a convenience sample, as it is required by the quantitative method, which legitimate making generalization under certain conditions.

Findings

The research results indicated that the national culture does not influence the GSCM implementation. The results contradict a number of prior works. As for the second direct effect measured postulated that organizational culture has a direct and significant impact on the GSCM. The results indicate that adhocracy culture, clan culture and hierarchical culture have a positive impact on the implementation of GSCM initiatives. To assess the impact of ownership type on GSCM, we underlined the difference between local and foreign firms. In fact, as argued, the foreign firms are more implementing GSCM initiatives than local firms do. Based on the arguments advanced on prior literature, the firm size does, as expected, exert significant control over the adoption of GSCM initiatives.

Research limitations/implications

The paper here is a starting point to understand how environmental sustainability and culture are interlinked; further research might contribute to this topic by empirically testing the model in similar or different contexts, using different cultural frameworks.

Practical implications

The practical implications for the paper are related to the necessity of adopting adequate organizational culture to build responsible behaviors for GSCM adoption by Moroccan firms. Recognizing the powerful role of organizational culture as a crucial factor responsible for GSCM’s success beyond the well-defined corporate strategies, including market presence and technological advantages, etc.

Social implications

This paper contributes to the establishment of codependent links between sociology and management fields as it helps to update the social theories present in the operations management area.

Originality/value

To the best of the author’s knowledge, few works have pursued to review and bridge cultural theories with the GSCM implementation.

Details

RAUSP Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2531-0488

Keywords

Access

Year

Last week (406)

Content type

Earlycite article (406)
1 – 10 of 406