Search results

1 – 10 of 49
Article
Publication date: 4 April 2023

Govind Waghmare and Rachayya Rudramuni Arakerimath

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet…

Abstract

Purpose

This study aims to identify the significant factors of the multi-dimpling process, determine the most influential parameters of multi-dimpling to increase the dimple sheet strength and make a low-cost model of the multi-dimpling for sheet metal industries. To create an empirical expression linking process performance to different input factors, the percentage contribution of these elements is also calculated.

Design/methodology/approach

Taguchi grey relational analysis is used to apply a new effective strategy to experimental data in order to optimize the dimpling process parameters while taking into account several performance factors and low-cost model. In addition, a statistical method called ANOVA is used to ensure that the results are adequate. The optimal process parameters that generate improved mechanical properties are determined via grey relational analysis (GRA). Every level of the process variables, a response table and a grey relational grade (GRG) has been established.

Findings

The factors created for experiment number 2 with 0.5 mm as the sheet thickness, 2 mm dimple diameter, 0.5 mm dimple depth, 8 mm dimples spacing and the material of SS 304 were allotted rank one, which belonged to the optimal parameter values giving the greatest value of GRG.

Practical implications

The study demonstrates that the process parameters of any dimple sheet manufacturing industry can be optimized, and the effect of process parameters can be identified.

Originality/value

The proposed low-cost model is relatively economical and readily implementable to small- and large-scale industries using newly developed multi-dimpling multi-punch and die.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 25 March 2024

Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan and Abdullah Dağdeviren

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology…

Abstract

Purpose

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.

Design/methodology/approach

During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.

Findings

The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.

Originality/value

The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 December 2023

Rambabu Lavuri, Dimple Kaul, Geetha Mohan, Nirma Sadamali Jayawardena and Park Thaichon

This study investigated the antecedents influencing purchase intentions of sustainable luxury products using the stimulus-organism-response (S-O-R) model.

Abstract

Purpose

This study investigated the antecedents influencing purchase intentions of sustainable luxury products using the stimulus-organism-response (S-O-R) model.

Design/methodology/approach

The data were collected from 513 participants through surveys about recent purchases of sustainable luxury products. As part of this study, the authors visited luxury retail outlets in Hyderabad, Mumbai and Chennai, and AMOS version 23 was used to analyze the data.

Findings

Consumer trust and attitude (organism) are positively influenced by utilitarian, hedonic, epistemic, social and self-image (SEI) stimuli. Consumer trust and attitude (organism) have a significant impact on sustainable luxury purchase intention (response). In addition, escapism (ESC) moderated the organism–response relationship.

Practical implications

As a result of the findings regarding utilitarian, hedonistic, epistemic, social and SI aspects of luxury brands, practitioners can develop sustainable marketing strategies that will promote luxury brands.

Originality/value

This study contributes to the existing literature by examining the moderating role of entertainment (ENT) and ESC in the S-O-R model in terms of antecedents influencing the purchase intention of sustainable luxury products. Furthermore, this new model contributes by providing a deeper understanding of sustainable luxury shoppers' intentions in India through analyzing purchase intentions for sustainable luxury products.

Details

International Journal of Retail & Distribution Management, vol. 52 no. 2
Type: Research Article
ISSN: 0959-0552

Keywords

Article
Publication date: 7 December 2023

Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, Eda Aydogan and Bahattin Koc

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and…

Abstract

Purpose

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.

Design/methodology/approach

In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.

Findings

The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.

Originality/value

It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 September 2023

Xing Ai, Shuaishuai Wang, Fenghua Luo, Haiqing Pei and Zhenwei Li

The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep…

Abstract

Purpose

The purpose of this study is to describe the mechanism of single-crystal high-temperature creep deformation, predict the creep life more accurately and study the creep constitutive and lifetime models with microstructure evolution.

Design/methodology/approach

The mechanical properties of nickel-based single-crystal superalloy are closely related to the γ' phase. Creep tests under four different temperature and stress conditions were carried out. The relationship between creep temperature, stress and life is fitted by numerical method, and the creep activation energy is obtained. The creep fracture surface, morphology and evolution of strengthening phase (γ') and matrix phase (γ) during different creep periods were observed by scanning electron microscope. With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by transmission electron microscope (TEM).

Findings

With the increase of creep temperature, the rafting time is advanced. The detailed morphology and evolution of dislocations were observed by TEM. Dislocations are mainly concentrated in the γ channel phase, especially at high temperature and low stress.

Originality/value

A creep constitutive model based on the evolution of γ' phase size and γ channel width was proposed. Compared with the experimental results, the predicted creep life is within 1.4 times error dispersion band.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 April 2023

Xiangou Zhang, Yuexing Wang, Xiangyu Sun, Zejia Deng, Yingdong Pu, Ping Zhang, Zhiyong Huang and Quanfeng Zhou

Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to…

Abstract

Purpose

Au stud bump bonding technology is an effective means to realize heterogeneous integration of commercial chips in the 2.5D electronic packaging. The purpose of this paper is to study the long-term reliability of the Au stud bump treated by four different high temperature storage times (200°C for 0, 100, 200 and 300 h).

Design/methodology/approach

The bonding strength and the fracture behavior are investigated by chip shear test. The experiment is further studied by microstructural characterization approaches such as scanning electron microscope, energy dispersive spectrometer and so on.

Findings

It is recognized that there were mainly three typical fracture models during the chip shear test among all the Au stud bump samples treated by high temperature storage. For solder bump before aging, the fracture occurred at the interface between the Cu pad and the Au stud bump. As the aging time increased, the fracture mainly occurred inside the Au stud bump at 200°C for 100 and 200 h. When aging time increased to 300 h, it is found that the fracture transferred to the interface between the Au stud bump and the Al Pad.

Originality/value

In addition, the bonding strength also changed with the high temperature storage time increasing. The bonding strength does not change linearly with the high temperature storage time increasing but decreases first and then increases. The investigation shows that the formation of the intermetallic compounds because of the reaction between the Au and Al atoms plays a key role on the bonding strength and fracture behavior variation.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 16 January 2024

Longchang Zhang, Qi Chen, Yanguo Yin, Hui Song and Jun Tang

Gears are prone to instantaneous failure when operating under extreme conditions, affecting the machinery’s service life. With numerous types of gear meshing and complex operating…

86

Abstract

Purpose

Gears are prone to instantaneous failure when operating under extreme conditions, affecting the machinery’s service life. With numerous types of gear meshing and complex operating conditions, this study focuses on the gear–rack mechanism. This study aims to analyze the effects and optimization of biomimetic texture parameters on the line contact tribological behavior of gear–rack mechanisms under starvation lubrication conditions.

Design/methodology/approach

Inspired by the microstructure of shark skin surface, a diamond-shaped biomimetic texture was designed to improve the tribological performance of gear–rack mechanism under starved lubrication conditions. The line contact meshing process of gear–rack mechanisms under lubrication-deficient conditions was simulated by using a block-on-ring test. Using the response surface method, this paper analyzed the effects of bionic texture parameters (width, depth and spacing) on the tribological performance (friction coefficient and wear amount) of tested samples under line contact and starved lubrication conditions.

Findings

The experimental results show an optimal proportional relationship between the texture parameters, which made the tribological performance of the tested samples the best. The texture parameters were optimized by using the main objective function method, and the preferred combination of parameters was a width of 69 µm, depth of 24 µm and spacing of 1,162 µm.

Originality/value

The research results have practical guiding significance for designing line contact motion pairs surface texture and provide a theoretical basis for optimizing line contact motion pairs tribological performance under extreme working conditions.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 49