Search results

1 – 10 of 71
Article
Publication date: 12 March 2018

Yuan Wang

The main purpose of this study is to enhance bio-tribological properties of Ti6Al4V and the surface-modified layers of Ni+/N+-implanted Ti6Al4V alloy, bionic texturing was done on…

Abstract

Purpose

The main purpose of this study is to enhance bio-tribological properties of Ti6Al4V and the surface-modified layers of Ni+/N+-implanted Ti6Al4V alloy, bionic texturing was done on Ti6Al4V surface.

Design/methodology/approach

The phase compositions and nano-hardness of the surface-modified layers of the samples have been analyzed by X-ray diffractometer and Nano Indenter, respectively. This paper has conducted bio-tribological tests under artificial saliva, sodium hyalurate and sodium hyalurate +γ-globulin by micro tribology multifunction tribometer, with ZrO2 ball/modified layer as the friction pair. S-3000N scanning electron microscope has been used to analyze the morphology of the surface-modified layers and scratches of the ones after the bio-tribological tests.

Findings

The results show that the surface-modified layers were mainly composed of Ti2Ni and Ti2N. Moreover, bionic texturing can obviously increase the contents of Ti2Ni and Ti2N that were formed on the surface of Ni+/N+-implanted Ti6Al4V alloy, and enhance the nano-hardness of the surface-modified layers. It could also reduce the friction coefficients of the surface-modified layers, and render the modified layers more wear-resistant.

Originality/value

The surface bio-tribological properties of Ti6Al4V have been enhanced by ion implantation technique and bionic texturing in this paper; this provided a new method for the research of related fields.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2024

Longchang Zhang, Qi Chen, Yanguo Yin, Hui Song and Jun Tang

Gears are prone to instantaneous failure when operating under extreme conditions, affecting the machinery’s service life. With numerous types of gear meshing and complex operating…

86

Abstract

Purpose

Gears are prone to instantaneous failure when operating under extreme conditions, affecting the machinery’s service life. With numerous types of gear meshing and complex operating conditions, this study focuses on the gear–rack mechanism. This study aims to analyze the effects and optimization of biomimetic texture parameters on the line contact tribological behavior of gear–rack mechanisms under starvation lubrication conditions.

Design/methodology/approach

Inspired by the microstructure of shark skin surface, a diamond-shaped biomimetic texture was designed to improve the tribological performance of gear–rack mechanism under starved lubrication conditions. The line contact meshing process of gear–rack mechanisms under lubrication-deficient conditions was simulated by using a block-on-ring test. Using the response surface method, this paper analyzed the effects of bionic texture parameters (width, depth and spacing) on the tribological performance (friction coefficient and wear amount) of tested samples under line contact and starved lubrication conditions.

Findings

The experimental results show an optimal proportional relationship between the texture parameters, which made the tribological performance of the tested samples the best. The texture parameters were optimized by using the main objective function method, and the preferred combination of parameters was a width of 69 µm, depth of 24 µm and spacing of 1,162 µm.

Originality/value

The research results have practical guiding significance for designing line contact motion pairs surface texture and provide a theoretical basis for optimizing line contact motion pairs tribological performance under extreme working conditions.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 September 2022

Yueyong Wang and Yimin Zhang

The purpose of this paper is to study the influence of dimple textures on the friction and wear properties of tapered roller bearings (TRBs) with many pattern parameters, e.g…

Abstract

Purpose

The purpose of this paper is to study the influence of dimple textures on the friction and wear properties of tapered roller bearings (TRBs) with many pattern parameters, e.g. diameter, depth and area density under starved lubrication.

Design/methodology/approach

The pattern parameters include the dimple diameter (D; 60, 100 and 200 µm), dimple depth (H; 5, 10 and 20 µm) and area density (S; 6%, 12% and 24%). Dimples were fabricated on the outer ring (OR) of TRBs using a laser marking machine. The tribological properties of dimple-textured TRBs under starved lubrication were studied on a vertical universal friction wear tester with special friction pairs. The effect mechanisms of dimple textures on the tribological properties of TRBs are presented and summarized through experiments and discussions.

Findings

When dimple-textured TRBs revolve under starved lubrication, the average coefficients of friction (ACOF) and wear losses are markedly lower than those of non-textured bearings. S has the greatest influence on the COF curve. When D is 100 µm and S is 24%, the ACOF and wear losses are both lowest, i.e. 0.00426 and 0.51 mg, respectively. Under the same test conditions, compared with the non-textured group, its COF and wear loss decreased by 35.6% and 62.5%, respectively.

Originality/value

This work provides a useful reference for the research on the raceways of textured TRBs.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2018

Long Zheng, Yihang Gao, Yinghui Zhong, Guolong Lu, Zhenning Liu and Luquan Ren

The purpose of this study is to elucidate the size effect (groove width, unit length and area density) of the hexagonal texture on tribological properties under lubrication.

Abstract

Purpose

The purpose of this study is to elucidate the size effect (groove width, unit length and area density) of the hexagonal texture on tribological properties under lubrication.

Design/methodology/approach

The tribological properties of nine hexagonal textures with different hexagon lengths and groove widths have been investigated under mixed lubrication to elucidate the size effect.

Findings

Overall, the friction coefficient decreases as the groove width increases within the examined range, whereas the hexagon length shows an optimal value around 3 mm. In particular, one hexagonal texture (3 × 3 mm) exhibits lower friction coefficients and less wear losses than the others. Interestingly, two hexagonal textures of similar area density (1 × 1 mm and 3 × 3 mm) yield the worst and best tribological performances, respectively, which can be explained by the simulated distribution of equivalent stress.

Originality/value

The tribological properties of nine hexagonal textures are examined under lubrication. The 3 × 3 texture exhibits lower friction coefficient and wear loss than the others. Two textures of similar area density yield the worst and best tribological performances. The results agree with the simulated distribution of equivalent stress.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 September 2019

Siyang Gao, Jianwei Sun and Bangcheng Zhang

The purpose of this paper is to design a kind of air bearing which is based on bionics. Compare with ordinary air bearing, the air pressure consumption is reduced and energy is…

Abstract

Purpose

The purpose of this paper is to design a kind of air bearing which is based on bionics. Compare with ordinary air bearing, the air pressure consumption is reduced and energy is saved.

Design/methodology/approach

This paper puts forward a proposition that a bionic bearing structure is designed based on the bionics principle. First, the authors analyze the microstructure of the wings of long-eared owls and the structural mapping model is established. Second, the theoretical formula is derived through the model, and the structural parameters are optimized by sequence quadratic program (SQP). Lastly, the experimental model is made by 3D printing technology, and the experimental data are analyzed to verify the feasibility of the theory.

Findings

By comparing the experimental data, it can be seen that the air pressure of the original air bearing is reduced by 27 per cent, and the validity of the theory and design method is verified.

Originality/value

In this paper, a design method of air bearing based on bionic principle is presented, which can save the air pressure required for working of air bearing, and the structure of air bearing is expected to be applied in engineering.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2020

Siyang Gao, Bangcheng Zhang, Jianwei Sun and Wenrui Liu

The purpose of this paper is to design a biomimetic surface structure for use in a glass transport device to enhance the suspension lift of a glass transport unit.

Abstract

Purpose

The purpose of this paper is to design a biomimetic surface structure for use in a glass transport device to enhance the suspension lift of a glass transport unit.

Design/methodology/approach

This paper presents a surface structure of a suspended glass transport device based on the principle of bionics. First, a mapping model is constructed based on the wing structure. Second, the optimal structural parameters are given according to genetic algorithm optimization. Finally, the experimental comparison of the test bench verified the feasibility of the theory.

Findings

Through experimental comparison, the biomimetic suspension glass transport device saves 20% of air pressure compared with the ordinary suspended glass transport device, which verifies the effectiveness of the theoretical method.

Originality/value

This paper proposes a suspended glass transport device based on the principle of bionics, which saves the air pressure required for work. It is expected to be used in suspension glass transport devices.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0389/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2019

Vivek Kumar, Satish C. Sharma and Kuldeep Narwat

Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are…

Abstract

Purpose

Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are carried out to examine the influence of surface texture on performance of hybrid thrust bearing system. This paper aims to determine optimum attributes of micro-grooves for thrust bearing operating in hybrid mode.

Design/methodology/approach

An iterative source code based on finite element formulation of Reynolds equation has been developed to numerically simulate flow of lubricant through the bearing. Mass-conserving algorithm based on Jakobsson–Floberg–Olsson (JFO) condition has been used to numerically capture cavitation phenomenon in the bearing. Gauss Siedel method has been used to obtain steady state performance parameters of the bearings.

Findings

A parametric study has been performed to improve the load supporting capacity of the bearing by optimizing micro-groove attributes and configuration. It is noticed that use of full-section micro-groove is beneficial in improving the efficiency of bearing by enhancing the fluid film reaction and reducing the film frictional power losses.

Originality/value

This study is helpful in examining the usefulness of micro-groove textured surfaces in hybrid thrust bearing applications.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 April 2022

Lili Wang, Wei Zhang, Xingtang Zhao and Xue Ge

Researchers have not reached an agreement on which biomimetic shape has the best lubrication performance. This paper aims to study the influence of microtexture size, shape and…

Abstract

Purpose

Researchers have not reached an agreement on which biomimetic shape has the best lubrication performance. This paper aims to study the influence of microtexture size, shape and direction on bearing capacity, end leakage, friction coefficient and wear of oil film.

Design/methodology/approach

Different oil film thickness equations considering the microtexture of bearing surface are gained. The two-dimensional finite difference equation and the calculation equation of wear are established.

Findings

The theoretical research shows that the wear value and the wear ratio when long side is perpendicular to the axial direction of the bearing are generally lower than when the long axis is parallel to the axial direction of bearing. The theoretical and experimental results show that the appropriate microtexture shape, such as circular dimple, crescent-shaped dimple, triangular dimple and fish-shaped dimple can improve effectively the lubrication performance of journal bearing and reduce the friction coefficient.

Originality/value

The research has great significance to reduce friction and improve the wear resistance of equipment.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2023

Yueyong Wang, Yimin Zhang and Risheng Long

This study aims to investigate the effect of compound pit textures on the tribological properties of thrust cylindrical roller bearings (TCRBs) using several parameters, such as…

Abstract

Purpose

This study aims to investigate the effect of compound pit textures on the tribological properties of thrust cylindrical roller bearings (TCRBs) using several parameters, such as compound type, pit diameter, pit depth and pit area density.

Design/methodology/approach

The surface texture parameters of the shaft washer (WS) raceway include pit diameter (D; 100, 300 and 500 µm), pit depth (H; 10 and 20 µm) and pit area density (S; 10%, 13% and 18%). Pits were produced on the WS of the TCRBs using laser marking equipment. The friction and wear performances of compound pit-textured TCRBs under starved lubrication conditions are studied using a friction and wear test rig. The influence mechanisms of the compound pit texture on the friction and wear properties of TCRBs are discussed through real tests and discussions.

Findings

Compared with nontextured bearings, the average coefficient of friction (ACOFs) and wear loss of TCRBs with single/compound pit textures are reduced when rotating under starved lubrication. D has the greatest effect on the COFs curve. When D = 300 µm, H = 10 µm and S = 10%, the ACOF and wear loss are the lowest, that is, 0.0207 and 3.38 mg, respectively. Under the same lubrication conditions, compared with the nontextured bearing group, the COF and wear loss are reduced by 41.4 and 59.6%, respectively.

Originality/value

This study provides a useful reference for the raceways of textured TCRBs.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 71