Search results

1 – 10 of over 6000
Article
Publication date: 12 March 2018

Azadeh Haghighi and Lin Li

Quantifying and controlling the quality characteristics of parts produced by additive manufacturing (AM) processes has attracted significant interest in the research community…

Abstract

Purpose

Quantifying and controlling the quality characteristics of parts produced by additive manufacturing (AM) processes has attracted significant interest in the research community. However, to increase the sustainability of AM processes, such quality characteristics need to be assessed together with life cycle performance of AM processes such as energy and material consumption and manufacturing cost. Although a few studies have been performed for several quality characteristics, i.e. surface roughness and tensile strength, the relationship between dimensional performance and manufacturing cost is still not well known for AM processes.

Design/methodology/approach

In this paper, a comprehensive study of the dimensional performance and manufacturing cost of fused deposition modeling AM process is performed. Design of experiment technique is used, and the correlation of different cost components and the dimensional accuracy of parts are statistically studied.

Findings

The optimum process parameters for simultaneously optimizing the dimensional performance and manufacturing cost are identified. The analysis shows that as opposed to traditional manufacturing processes, obtaining a better dimensional performance is not necessarily associated with higher cost in the AM processes.

Originality/value

Almost no study and analysis for the combined dimensional performance and manufacturing cost has been performed for AM processes in the literature. It is known that within the context of traditional manufacturing processes, a natural trade-off governs the pursuit of higher dimensional performance and the manufacturing cost. However, as the AM process has a different nature compared with traditional manufacturing processes, the relationship between manufacturing cost and dimensional performance of parts has to be studied. Understanding this relationship will also help to establish a cost-optimal and sustainable tolerance allocation strategy in assemblies with AM components.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 October 2015

Sunil Kumar Tiwari, Sarang Pande, Sanat Agrawal and Santosh M. Bobade

The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the…

3875

Abstract

Purpose

The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements.

Design/methodology/approach

The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials.

Findings

Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts.

Originality/value

The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 March 2020

Jinshun Yan

To obtain a high-quality finished product model, three-dimensional (3D) printing needs to be optimized.

Abstract

Purpose

To obtain a high-quality finished product model, three-dimensional (3D) printing needs to be optimized.

Design/methodology/approach

Based on back-propagation neural network (BPNN), the particle swarm optimization (PSO) algorithm was improved for optimizing the parameters of BPNN, and then the model precision was predicted with the improved PSO-BPNN (IPSO-BPNN) taking nozzle temperature, etc. as the influencing factors.

Findings

It was found from the experimental results that the prediction results of IPSO-BPNN were closer to the actual values than BPNN and PSO-BPNN, and the prediction error was smaller; the average error of dimensional precision and surface precision was 6.03% and 6.54%, respectively, which suggested that it could provide a reliable guidance for 3D printing optimization.

Originality/value

The experimental results verify the validity of IPSO-BPNN in 3D printing precision prediction and make some contributions to the improvement of the precision of finished products and the realization of 3D printing optimization.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 8 May 2018

Ning Du and Ray Whittington

The purpose of this paper is to investigate how managerial disclosure of imprecise information about revenue recognition affects investors’ perceptions of corporate and management…

Abstract

Purpose

The purpose of this paper is to investigate how managerial disclosure of imprecise information about revenue recognition affects investors’ perceptions of corporate and management performance. Specifically, the authors focus on how outcome and probability dimensions and their respective (im) precision interact with each other and jointly affect investors’ judgments and decision-making.

Design/methodology/approach

The authors conducted an experiment where the dimensions are manipulated (outcome vs probability) of disclosed revenue recognition information and its related precision (a point vs a range estimate).

Findings

Results from this study suggest that participants are sensitive to specific dimensions of uncertainty disclosure: participants were highly aware of the (im)precision in outcome information, were more likely to invest when both dimensions were vague and expected higher revenue when dimensional precision was consistent.

Practical implications

The results imply that dimensional precision is an important component in uncertainty disclosure and may have a significant impact on investors’ judgments and decision making. Regulators and managers should consider dimensional imprecision when they develop and implement disclosure strategy regarding revenue recognition.

Social implications

The results have practical value for regulators/managers, who are in the process of developing/implementing disclosure strategy regarding revenue recognition.

Originality/value

This is the first study to examine the interaction of dimensions of uncertainty in revenue disclosures.

Details

Accounting Research Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1030-9616

Keywords

Article
Publication date: 9 September 2014

Mingzhou Liu, Conghu Liu and Qinghua Zhu

The purpose of this study was to research how the reassembly (remanufacturing assembly) achieves a quality that is not lower than original production with different precision…

Abstract

Purpose

The purpose of this study was to research how the reassembly (remanufacturing assembly) achieves a quality that is not lower than original production with different precision remanufactured parts based on the integration of mechanics, mathematics (measurement uncertainty) and management (optional classification). Remanufactured product quality is the soul of the remanufacturing project.

Design/methodology/approach

First, this paper studies the recycled parts features and reassembly features. Then, we build the mathematical sub-model with remanufactured parts and dimensional precision, which is proven that optional classification can effectively improve the reassembly accuracy mathematically. The optimization model of optional classification for reassembly is proposed under the constraint of a dimensional chain, and the solutions are studied based on particle swarm optimization. Finally, this method is applied in a remanufacturing enterprise and achieves good results.

Findings

The method can reduce the cost of quality loss and improve the quality of remanufactured products.

Originality/value

It provides a new solution and idea for reassembly with different precision remanufactured parts and promotes the healthy development of reverse logistics with a high level of customer satisfaction. This method can maximize the use of different levels of quality remanufactured parts and improve reassembly accuracy by mathematical proofs and examples.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 October 2018

Xiaokai Mu, Qingchao Sun, Wei Sun, Yunlong Wang, Chuanhua Wang and Xiaobang Wang

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to…

Abstract

Purpose

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to analyze the influence mechanism of flexible parts deformation on the geometric precision, and then to ensure the reliability and stability of the mechanical system.

Design/methodology/approach

Firstly, this paper adopts the N-GPS to analyze the influence mechanism of flexible parts deformation on the geometric precision and constructs a coupling 3D tolerance mathematical model of the geometric tolerance and the load deformation deviation based on the SDT theory, homogeneous coordinate transformation theory and surface authentication idea. Secondly, the least square method is used to fit the deformation surface of the mating surface under load so as to complete the conversion from the non-ideal element to the ideal element.

Findings

This paper takes the horizontal machining center as a case to obtain the deformation information of the mating surface under the self-weight load. The results show that the deformation deviation of the parts has the trend of transmission and accumulation under the load. The terminal deformation cumulative amount of the system is up to –0.0249 mm, which indicated that the influence of parts deformation on the mechanical system precision cannot be ignored.

Originality/value

This paper establishes a comprehensive 3D tolerance mathematical model, which comprehensively considers the effect of the dimensional tolerance, geometric tolerance and load deformation deviation. By this way, the assembly precision of mechanical system can be accurately predicted.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 July 2019

Farui Du, Jinqian Zhu, Xueping Ding, Qi Zhang, Honglin Ma, Jie Yang, Hongzhong Cao, Zemin Ling, Guoyu Wang, Xuanming Duan and Shuqian Fan

A wire-based additive manufacturing system works with high manufacturing efficiency and low dimensional precision. The purpose of this paper is to study the dimensional…

452

Abstract

Purpose

A wire-based additive manufacturing system works with high manufacturing efficiency and low dimensional precision. The purpose of this paper is to study the dimensional characteristics of Ti-6Al-4V thin-walled parts with wire-based multi-laser additive manufacturing in vacuum.

Design/methodology/approach

Wire-based multi-laser additive manufacturing was carried out to understand the effect brought from different parameters. The Ti-6Al-4V thin-walled parts were formed by different height increments, power inputs and inter-layer cooling times in vacuum.

Findings

The result shows that, with the number of layers increment, the layer width of thin-walled part increases gradually in the beginning and stabilizes soon afterward. Height increment, laser power and inter-layer cooling time could affect the energy input to the deposited bead and heat accumulation of thin-walled part. The layer width decreases, while the height increment increases. The increment of laser power could increase the layer width. And, the increment of inter-layer cooling time (more than 5 s) has little effect on the layer width.

Originality/value

The heat dissipation mode of thin-walled parts in vacuum and the influence of different parameters on layer width are explained in this paper. It provides a reference for further understanding and controlling dimension precision of Ti-6Al-4V thin-walled part with wire-based multi-laser additive manufacturing in vacuum. At the same time, it provides a reference for researches of dimensional characteristics in the additive manufacturing industry.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 1994

C Butler

Looks at work carried out by The Centre for Manufacturing Metrology atBrunel University into developing new probes for high precision dimensionalmeasurement. Describes the…

153

Abstract

Looks at work carried out by The Centre for Manufacturing Metrology at Brunel University into developing new probes for high precision dimensional measurement. Describes the conventional “touch‐trigger” probe and the errors in its performance. Also describes three prototype probes all based on fibre optic principles: a two dimensional Triggering Probe; a three dimensional Analogue Probe and a non‐contact probe. Concludes that the 2‐D triggering probe is a simple construction but limited to 2‐D operation; the analogue 3‐D is smaller in comparison with existing types, comparable in accuracy and cheaper to manufacture, and the non‐contact probe has potential for future development with some form of “intelligent” data processing.

Details

Sensor Review, vol. 14 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 January 2022

Ramesh Chand, Vishal S. Sharma, Rajeev Trehan and Munish Kumar Gupta

A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine…

Abstract

Purpose

A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer.

Design/methodology/approach

Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections.

Findings

Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above.

Originality/value

Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 6000