Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 18 July 2023

Ulrich Gabbert, Stefan Ringwelski, Mathias Würkner and Mario Kittsteiner

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as…

Abstract

Purpose

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as the life span of structures, especially if they are subjected to high static and dynamic loads. Such defects should be considered during the design process or after production, where the defects could be detected with the help of computed tomography (CT) measurements. However, this is usually not done in today's mass production environments. This paper deals with the stress analysis of die-cast structural parts with pores found from CT measurements or that are artificially placed within a structure.

Design/methodology/approach

In this paper the authors illustrate two general methodologies to take into account the porosity of die-cast components in the stress analysis. The detailed geometry of a die-cast part including all discontinuities such as pores and shrink holes can be included via STL data provided by CT measurements. The first approach is a combination of the finite element method (FEM) and the finite cell method (FCM), which extends the FEM if the real geometry cuts finite elements. The FCM is only applied in regions with pores. This procedure has the advantage that all simulations with different pore distributions, real or artificial, can be calculated without changing the base finite element mesh. The second approach includes the pore information as STL data into the original CAD model and creates a new adapted finite element mesh for the simulation. Both methods are compared and evaluated for an industrial problem.

Findings

The STL data of defects which the authors received from CT measurements could not be directly applied without repairing them. Therefore, for FEM applications an appropriate repair procedure is proposed. The first approach, which combines the FEM with the FCM, the authors have realized within the commercial software tool Abaqus. This combination performs well, which is demonstrated for test examples, and is also applied for a complex industrial project. The developed in-house code still has some limitations which restrict broader application in industry. The second pure FEM-based approach works well without limitations but requires increasing computational effort if many different pore distributions are to be investigated.

Originality/value

A new simulation approach which combines the FEM with the FCM has been developed and implemented into the commercial Abaqus FEM software. This approach the authors have applied to simulate a real engineering die-cast structure with pores. This approach could become a preferred way to consider pores in practical applications, where the porosity can be derived either from CT measurements or are artificially adopted for design purposes. The authors have also shown how pores can be considered in the standard FEM analysis as well.

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2024

Çağın Bolat, Nuri Özdoğan, Sarp Çoban, Berkay Ergene, İsmail Cem Akgün and Ali Gökşenli

This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the…

Abstract

Purpose

This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry.

Design/methodology/approach

Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings.

Findings

Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds.

Research limitations/implications

The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations.

Practical implications

It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling.

Social implications

It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers.

Originality/value

This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Expert briefing
Publication date: 11 July 2023

Data such as DNA, blood and saliva may also be used, typically in medical and legal settings. While the use of such identification increases, concerns about abuses of the most…

Details

DOI: 10.1108/OXAN-DB280408

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 28 March 2023

Ronnie Figueiredo, João J. Ferreira, Maria Emilia Camargo and Oleksandr Dorokhov

This study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model…

Abstract

Purpose

This study aims to predict the dark side of knowledge management risk to innovation in Portuguese small and medium enterprises (SMEs). It examines the spinner innovation model factors of knowledge creation, knowledge transfer, private knowledge, public knowledge and innovation in uncertain environments.

Design/methodology/approach

The authors developed a conceptual model to support the analysis. The survey data stemmed from a sample of 208 Portuguese SMEs in Portugal. The authors analyzed the primary data from the ad hoc survey using the data mining (deep learning) technique.

Findings

The research sets out and tests factors relevant to understanding how to predict innovation in uncertain business environments. This study identifies four factors fostering innovation in SMEs: knowledge creation, knowledge transfer, public knowledge management and private knowledge management. Knowledge creation showed the best return and presented the closest relationship with innovation.

Originality/value

Innovation models generally measure the relationships between variables and their impacts on the economy (economic and regional development). Predictive models are considered in the literature as a gap to be filled, especially in an uncertain environment in the SME context.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 53 no. 5
Type: Research Article
ISSN: 2059-5891

Keywords

Article
Publication date: 20 April 2023

Lezhi Ye, Xuanjie Song and Chang Yue

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement…

83

Abstract

Purpose

Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment.

Design/methodology/approach

The current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied.

Findings

The simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency.

Originality/value

Magnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 June 2022

Justin Jahn and Sabine Bohnet-Joschko

This study aims to investigate whether health insurers are transforming from pure payers into ecosystem-based health service companies. The authors discuss the findings’ impact on…

Abstract

Purpose

This study aims to investigate whether health insurers are transforming from pure payers into ecosystem-based health service companies. The authors discuss the findings’ impact on health insurers’ business model approach and their sources of competitive advantage.

Design/methodology/approach

The authors conducted a multiple case study of 25 incumbent and rising health insurers from the USA, Europe and Asia-Pacific. The selection of firms was based on databases from Forbes, S&P Global Market Intelligence and Crunchbase. By performing a review of financial reports, app descriptions, corporate websites and media coverage, the authors analyzed health insurers’ digital service offerings and underlying strategic approaches for providing those services.

Findings

This study demonstrates that major health insurers are transforming into ecosystem-based health service companies. They expand the traditional insurance value chain by offering value-adding health services along the patient journey. The analysis results are summarized in a table displaying 18 digital service categories along core patient journey phases with corresponding examples of health insurers and underlying strategic approaches.

Originality/value

The role of digital services and ecosystems has been explored for many industries. This study investigates this subject area with a focus on the health insurance sector, advancing a young field of research. The analysis gives insights into the latest digital service offerings and strategic approaches of an internationally diverse set of incumbents and rising ventures.

Article
Publication date: 13 April 2023

Xing Gao, Z.J. Zhang, Hong Wei, Xu Zhou, Quan Shi, Yang Wu and Lei Da Chen

Solder bumps for chip interconnections are downsizing from current approximately 100 µm to the expected 1 µm in future. As a result, the Cu-Ni cross-interaction in Cu/Solder/Ni…

Abstract

Purpose

Solder bumps for chip interconnections are downsizing from current approximately 100 µm to the expected 1 µm in future. As a result, the Cu-Ni cross-interaction in Cu/Solder/Ni solder joints will be more complicated and then strongly influence the growth of the intermetallic compounds (IMCs). Thus, it is critical to understand the fundamental aspects of interfacial reaction in micro solder joints. This paper aims to reveal the effect mechanism of reflow temperature and solder size on the interfacial reaction in Cu/Solder/Ni solder joints.

Design/methodology/approach

The Cu-Ni cross-interaction in the Cu/Sn/Ni micro solder joints with 50 and 100 µm solder sizes at 250°C and 300°C were observed, respectively. The line-type interconnects were soaked in silicone oil, and the temperature of the line-type interconnects was 250 ± 3°C and 300 ± 3°C, which were monitored by a fine K-type thermocouple, and followed by an isothermal aging process at various times. After aging, the specimens were removed from the silicone oil and cooled in the air to room temperature.

Findings

The major interfacial reaction product on both interfaces was (Cu,Ni)6Sn5, and the asymmetric growth of (Cu,Ni)6Sn5, evidenced by the thickness of (Cu,Ni)6Sn5 IMCs at the Sn/Ni interface was always larger than that at the Sn/Cu interface, resulted from the directional migration of Cu atoms toward the Sn/Ni interface under Cu concentration gradient. The morphology of (Cu,Ni)6Sn5 IMC at Sn/Cu interface was columnlike at 250°C, and which changed from columnlike to scallop with large aspect ratio at 300°C, while that at Sn/Ni interface gradually evolved from needlelike to the mixture of needlelike and layered at 250°C, and which evolved from needlelike to scallop with large aspect ratio at 300°C. The evolution of morphology of (Cu,Ni)6Sn5 is attributed to the content of Ni. Furthermore, the results indicate that the Cu-Ni cross-interaction was stronger with small solder size and relatively low temperature in the Cu/Sn/Ni micro solder joints.

Originality/value

The asymmetric growth of (Cu,Ni)6Sn5 in the Cu/Sn/Ni micro solder joints, evidenced by the thickness of (Cu,Ni)6Sn5 IMCs at the Sn/Ni interface, was always larger than that at the Sn/Cu interface. The morphology evolution of (Cu,Ni)6Sn5 IMC at both interfaces was attributed to the content of Ni. The Cu-Ni cross-interaction was stronger with small solder size and relatively low temperature in the Cu/Sn/Ni micro solder joints.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 11 October 2022

Zongxian Wang

Motivated by consumers' concerns about water resources, this paper studies the interactive impact of advertising efforts and water-saving on corporate profits in apparel supply…

Abstract

Purpose

Motivated by consumers' concerns about water resources, this paper studies the interactive impact of advertising efforts and water-saving on corporate profits in apparel supply chains. Moreover, this study attempts to find an effective way to improve the profit of supply chain members under different game scenarios. Therefore, this study explores the game scenarios with considering the cost-sharing contract.

Design/methodology/approach

This paper constructs two basic game models considering different market power in the apparel supply chains, and explores the Pareto improvement combined with cost-sharing contracts based on the basic models. Furthermore, this study extends the models by considering cost-saving and non-linear demand.

Findings

In this paper, it can be found that advertising efforts and water-saving have complex interactive relationships. Counter-intuitively, the increase in advertising efforts may increase water savings. Furthermore, it presents a Pareto improvement when considering cost-sharing contracts, and both the manufacturer and the retailer's profits may improve simultaneously. Moreover, it does not affect the main conclusions when consider the effects of cost-saving and non-linear demand.

Research limitations/implications

Although some important findings have been reached, this paper can be extended in many ways in the future. For example, the coordination mechanism among supply chain members can be considered and the fair distribution of profits can be studied. Moreover, the influence of the government policies on the optimal strategy, as well as changes in social welfare can be considered.

Practical implications

This study offers supply chain members the guidelines on coordinating water-saving investment and advertising efforts which provided new insight into the interaction of these two factors in the apparel supply chains. Moreover, it can provide a coordination mechanism for the supply chain members to improve their profits.

Social implications

This paper explores the interactive relationship between water-saving and advertising efforts. It can not only save more water resources but also enable consumers to enjoy more environmentally friendly apparel products.

Originality/value

The current literature mainly focuses on the impact of advertising efforts on firm profit. However, this paper studies the interaction between advertising efforts and water-saving in apparel supply chains. Furthermore, this study explores the optimal pricing strategies and Pareto improvement by considering cost-sharing contracts. It can provide theoretical and practical guidance for the decision-maker in deciding on advertising and water-saving investment.

Details

Kybernetes, vol. 53 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 1000