Search results

1 – 10 of 71
Article
Publication date: 31 July 2024

Xuelai Li, Xincong Yang, Kailun Feng and Changyong Liu

Manual monitoring is a conventional method for monitoring and managing construction safety risks. However, construction sites involve risk coupling - a phenomenon in which…

Abstract

Purpose

Manual monitoring is a conventional method for monitoring and managing construction safety risks. However, construction sites involve risk coupling - a phenomenon in which multiple safety risk factors occur at the same time and amplify the probability of construction accidents. It is challenging to manually monitor safety risks that occur simultaneously at different times and locations, especially considering the limitations of risk manager’s expertise and human capacity.

Design/methodology/approach

To address this challenge, an automatic approach that integrates point cloud, computer vision technologies, and Bayesian networks for simultaneous monitoring and evaluation of multiple on-site construction risks is proposed. This approach supports the identification of risk couplings and decision-making process through a system that combines real-time monitoring of multiple safety risks with expert knowledge. The proposed approach was applied to a foundation project, from laboratory experiments to a real-world case application.

Findings

In the laboratory experiment, the proposed approach effectively monitored and assessed the interdependent risks coupling in foundation pit construction. In the real-world case, the proposed approach shows good adaptability to the actual construction application.

Originality/value

The core contribution of this study lies in the combination of an automatic monitoring method with an expert knowledge system to quantitatively assess the impact of risk coupling. This approach offers a valuable tool for risk managers in foundation pit construction, promoting a proactive and informed risk coupling management strategy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 3 July 2024

Ashleigh Haw, Jay Daniel Thompson and Rob Cover

Widespread news coverage, politicised debate and social media commentary have given prominence to COVID-19 as an unparalleled threat to global health and mortality, intensifying…

Abstract

Widespread news coverage, politicised debate and social media commentary have given prominence to COVID-19 as an unparalleled threat to global health and mortality, intensifying panic and insecurity worldwide. In response, the endorsement and amplification of false claims about the pandemic has proliferated, in many cases, by public figures in the online ‘wellness’ realm. Using COVID-19 as a case study, this chapter interrogates observed connections between digital wellness cultures and informational disorders in times of crisis. The authors discuss the bourgeois liberal-individualist ideals that increasingly underpin much of this communication, exemplified through the co-option of social justice rhetoric and narratives of the ‘persecuted hero’. The authors also recognise the growing number of wellness influencers openly resisting pandemic-related mis/disinformation, and note the forms of anti-individualist, mutual care demonstrated in these ‘debunking’ efforts. The authors argue that these practices reflect a form of networked solidarity – enacted alongside a discursive distancing from individualist modes of thinking – that can be understood by applying a social ecological framework for understanding ‘resilience’.

Details

Researching Contemporary Wellness Cultures
Type: Book
ISBN: 978-1-80455-585-9

Keywords

Article
Publication date: 31 May 2024

Mario Versaci, Giovanni Angiulli, Luisa Angela Fattorusso, Paolo Di Barba and Alessandra Jannelli

Based on previous results of the existence, uniqueness, and regularity conditions for a continuous dynamic model for a parallel-plate electrostatic…

Abstract

Purpose

Based on previous results of the existence, uniqueness, and regularity conditions for a continuous dynamic model for a parallel-plate electrostatic micro-electron-mechanical-systems with the fringing field, the purpose of this paper concerns a Galerkin-FEM procedure for deformable element deflection recovery. The deflection profiles are reconstructed by assigning the dielectric properties of the moving element. Furthermore, the device’s use conditions and the deformable element’s mechanical stresses are presented and discussed.

Design/methodology/approach

The Galerkin-FEM approach is based on weighted residuals, where the integrals appearing in the solution equation have been solved using the Crank–Nicolson algorithm.

Findings

Based on the connection between the fringing field and the electrostatic force, the proposed approach reconstructs the deflection of the deformable element, satisfying the conditions of existence, uniqueness and regularity. The influence of the electromechanical properties of the deformable plate on the method has also been considered and evaluated.

Research limitations/implications

The developed analytical model focused on a rectangular geometry.

Practical implications

The device studied is suitable for industrial and biomedical applications.

Originality/value

This paper proposed numerical approach characterized by low CPU time enables the creation of virtual prototypes that can be analyzed with significant cost reduction and increased productivity.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 April 2024

Ellen A. Donnelly, Madeline Stenger, Daniel J. O'Connell, Adam Gavnik, Jullianne Regalado and Laura Bayona-Roman

This study explores the determinants of police officer support for pre-arrest/booking deflection programs that divert people presenting with substance use and/or mental health…

Abstract

Purpose

This study explores the determinants of police officer support for pre-arrest/booking deflection programs that divert people presenting with substance use and/or mental health disorder symptoms out of the criminal justice system and connect them to supportive services.

Design/methodology/approach

This study analyzes responses from 254 surveys fielded to police officers in Delaware. Questionnaires asked about views on leadership, approaches toward crime, training, occupational experience and officer’s personal characteristics. The study applies a new machine learning method called kernel-based regularized least squares (KRLS) for non-linearities and interactions among independent variables. Estimates from a KRLS model are compared with those from an ordinary least square regression (OLS) model.

Findings

Support for diversion is positively associated with leadership endorsing diversion and thinking of new ways to solve problems. Tough-on-crime attitudes diminish programmatic support. Tenure becomes less predictive of police attitudes in the KRLS model, suggesting interactions with other factors. The KRLS model explains a larger proportion of the variance in officer attitudes than the traditional OLS model.

Originality/value

The study demonstrates the usefulness of the KRLS method for practitioners and scholars seeking to illuminate patterns in police attitudes. It further underscores the importance of agency leadership in legitimizing deflection as a pathway to addressing behavioral health challenges in communities.

Details

Policing: An International Journal, vol. 47 no. 4
Type: Research Article
ISSN: 1363-951X

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 June 2024

Mohamed Hamed Zakaria and Ali Basha

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions…

Abstract

Purpose

The design of cantilever pile walls (CPWs) presents several common challenges. These challenges include soil variability, groundwater conditions, complex loading conditions, construction considerations, structural integrity, uncertainties in design parameters and construction and monitoring costs. Accordingly, this paper is to provide a detailed literature review on the design criteria of CPWs, specifically in cohesionless soil. This study aims to present a comprehensive overview of the current state of knowledge in this area.

Design/methodology/approach

The paper uses a literature review approach to gather information on the design criteria of CPWs in cohesionless soil. It covers various aspects such as excavation support systems (ESSs), deformation behavior, design criteria, lateral earth pressure calculation theories, load distribution methods and conventional design approaches.

Findings

The review identifies and discusses common challenges associated with the design of CPWs in cohesionless soil. It highlights the uncertainties in determining load distribution and the potential for excessive wall deformations. The paper presents various approaches and methodologies proposed by researchers to address these challenges.

Originality/value

The paper contributes to the field of geotechnical engineering by providing a valuable resource for geotechnical engineers and researchers involved in the design and analysis of CPWs in cohesionless soil. It offers insights into the design criteria, challenges and potential solutions specific to CPWs in cohesionless soil, filling a gap in the existing knowledge base. The paper draws attention to the limitations of existing analytical methods that neglect the serviceability limit state and assume rigid plastic soil behavior, highlighting the need for improved design approaches in this context.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 August 2024

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on Pasternak soil and to examine its various response parameters and stress resultants like…

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on Pasternak soil and to examine its various response parameters and stress resultants like deflection, rotation, bending moment and shear force when subjected to aircraft loading.

Design/methodology/approach

The study is carried out using a one-dimensional (1D) beam element based on the finite element method (FEM). Each node in this element has three rotational and three translational degrees of freedom (DOF). MATLAB programming is used to perform the static analysis of rigid pavement.

Findings

Response parameters and stress resultants of the rigid pavement were determined. The FEM used in this work is validated by two closed-form numerical examples, which are in great accord with previous research findings with a maximum divergence of 4.64%, therefore verifying the finite element approach used in the current study. Additionally, various parametric studies have been carried out to study the variations in response parameters and stress resultants.

Research limitations/implications

The investigation at hand focuses exclusively on the static analysis of the pavement. The study constraints pertaining to the preliminary design phase of rigid pavements are such that a comprehensive three-dimensional finite element analysis is deemed unnecessary.

Originality/value

As limited previous research had performed the static analysis of rigid pavement on Pasternak foundation with 6 DOF. Furthermore, no prior study has done seven separate parametric investigations on the static analysis of rigid pavement.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 December 2023

T.M. Jeyashree and P.R. Kannan Rajkumar

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to…

Abstract

Purpose

This study focused on identifying critical factors governing the fire response of prestressed hollow-core slabs. The hollow-core slabs used as flooring units can be subjected to elevated temperatures during a fire. The fire response of prestressed hollow-core slabs is required to develop slabs with greater fire endurance. The present study aims to determine the extent to which the hollow-core slab can sustain load during a fire without undergoing progressive collapse under extreme fire and heating scenarios.

Design/methodology/approach

A finite element model was generated to predict the fire response of prestressed hollow core slabs under elevated temperatures. The accuracy of the model was predicted by examining thermal and structural responses through coupled temperature displacement analysis. A sensitivity analysis was performed to study the effects of concrete properties on prediction of system response. A parametric study was conducted by varying the thickness of the slab, fire and heating scenarios.

Findings

Thermal conductivity and specific heat of concrete were determined as sensitive parameters. The thickness of the slab was identified as a critical factor at a higher load level. Asymmetric heating of the slab resulted in higher fire resistance compared with symmetric heating.

Originality/value

This is the first study focused on studying the effect of modeling uncertainties on the system response by sensitivity analysis under elevated temperatures. The developed model with a parametric study helps in identifying critical factors for design purposes.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 July 2024

Lijun Wan, Jiaqi Qiao and Quansheng Sun

The application of reinforcing old bridges by adding external prestressed steel bundles is becoming more and more widespread. However, the long-term safety performance test of the…

Abstract

Purpose

The application of reinforcing old bridges by adding external prestressed steel bundles is becoming more and more widespread. However, the long-term safety performance test of the strengthening method is rarely carried out. In this paper, the bearing capacity of a 420 m prestressed concrete (PC) continuous girder bridge after five years of strengthening is analyzed.

Design/methodology/approach

The bridge model of the bridge structure and strengthening scheme is established by the finite element software of the bridge. The theoretical load-bearing capacity of the bridge under the latest standard load grade is obtained by finite element analysis. The actual bearing capacity of the bridge is obtained by field test. Through the comparative analysis of theory and practice, the health state of the bridge after five years of reinforced operation is judged. The damage to the overall stiffness and external prestressing of the bridge is also analyzed.

Findings

The results of deflection and strain show that the stiffness and strength of the secondary side span and the middle span decrease slightly, and the maximum reduction of bearing capacity is 4.5%. The static stiffness of the whole bridge decreases as a result of cracks, and the maximum decrease is 21%. In the past five years, the relaxation loss of the external prestressing of the bridge is 3.31–3.97%, which is the main reason for the decrease in bearing capacity.

Originality/value

Through the joint analysis of the bridge stiffness and the loss of external prestressing, the strengthening condition of the bridge after five years of operation is effectively analyzed. The strengthening effect of the external prestressed steel beam strengthening method is analyzed, which can provide a reference for similar bridge strengthening.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 September 2024

M. Vishal, K.S. Satyanarayanan, M. Prakash, Rakshit Srivastava and V. Thirumurugan

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology…

Abstract

Purpose

At this moment, there is substantial anxiety surrounding the fire safety of huge reinforced concrete (RC) constructions. The limitations enforced by test facilities, technology, and high costs have significantly limited both full-scale and scaled-down structural fire experiments. The behavior of an individual structural component can have an impact on the entire structural system when it is connected to it. This paper addresses the development and testing of a self-straining preloading setup that is used to perform thermomechanical action in RC beams and slabs.

Design/methodology/approach

Thermomechanical action is a combination of both structural loads and a high-temperature effect. Buildings undergo thermomechanical action when it is exposed to fire. RC beams and slabs are one of the predominant structural members. The conventional method of testing the beams and slabs under high temperatures will be performed by heating the specimens separately under the desired temperature, and then mechanical loading will be performed. This gives the residual strength of the beams and slabs under high temperatures. This method does not show the real-time behavior of the element under fire. In real-time, a fire occurs simultaneously when the structure is subjected to desired loads and this condition is called thermomechanical action. To satisfy this condition, a unique self-training test setup was prepared. The setup is based on the concept of a prestressing condition where the load is applied through the bolts.

Findings

To validate the test setup, two RC beams and slabs were used. The test setup was tested in service load range and a temperature of 300 °C. One of the beams and slabs was tested conventionally with four-point bending and point loading on the slab, and another beam and slab were tested using the preloading setup. The results indicate the successful operation of the developed self-strain preloading setup under thermomechanical action.

Research limitations/implications

Gaining insight into the unpredictable reaction of structural systems to fire is crucial for designing resilient structures that can withstand disasters. However, comprehending the instantaneous behavior might be a daunting undertaking as it necessitates extensive testing resources. Therefore, a thorough quantitative and qualitative numerical analysis could effectively evaluate the significance of this research.

Originality/value

The study was performed to validate the thermomechanical load setup for beams and slabs on a single-bay single-storey RC frame with and without slab under various fire possible scenarios. The thermomechanical load setup for RC members is found to be scarce.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 71