Search results

1 – 10 of over 3000
Article
Publication date: 31 July 2020

Min Zhang and Huaying Pang

The purpose of this paper is to equip damping performance of frame structure with viscoelastic dampers connected to supports is studied, the influence of the damper supports and…

Abstract

Purpose

The purpose of this paper is to equip damping performance of frame structure with viscoelastic dampers connected to supports is studied, the influence of the damper supports and the damping parameters on the damping performance of the structure is analyzed, the practical economical arrangement of viscoelastic dampers on each floor is researched and the calculation method of the seismic effect of the damping structure is presented.

Design/methodology/approach

In this paper, Fourier transform is applied to the vibration equation of the structure equipped with viscoelastic dampers, the frequency domain solution of the vibration equation is solved and the time-domain solution of the equation is obtained by Fourier inverse transform, from which effects of the support coefficient and the relaxing time coefficient on the seismic response of the structure are analyzed.

Findings

The seismic effect of each floor and the bottom shear force of each vibration mode of a structure are analyzed, which indicates that the relaxing time coefficient of the damper should be controlled reasonably.

Originality/value

In this paper, the vibration equation is solved in the frequency domain for frame structure equipped with viscoelastic dampers. The time-domain solution of the equation is obtained by Fourier inverse transform, from which the seismic response of frame structure equipped with viscoelastic damper connected to supports is studied.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 September 2015

Linlin Li, Jiajun Yang and Wenwei Liu

The purpose of this paper is to explore the effect of surface roughness characterized by fractal geometry on squeeze film damping characteristics in damper of the linear rolling…

Abstract

Purpose

The purpose of this paper is to explore the effect of surface roughness characterized by fractal geometry on squeeze film damping characteristics in damper of the linear rolling guide, which has not been studied so far.

Design/methodology/approach

The stochastic model of film thickness between rail and damper is established by using the two-variable Weierstrass–Mandelbrot function defining multi-scale and self-affinity properties of the rough surface topography. The stochastically averaged Reynolds equation is solved by using the variables separation method to further derive the film pressure distribution, the damping coefficient, the damping force and squeeze film time. The effect of surface roughness on squeeze film damping characteristics of the damper is analyzed and discussed through simulation.

Findings

By comparing cases of the rough surface for different fractal parameters and the smooth surface, it is shown that for the isotropic roughness structure, the presence of surface roughness of the damper decreases the squeeze film damping characteristics. It is found that roughness effect on the damping coefficient is associated with the film thickness. In addition, the vibration amplitude effect is negligible for the damper of the linear rolling guide.

Originality/value

To investigate the random surface roughness effect, the rough surface topography of damper of the linear rolling guide is characterized by using the fractal method instead of the traditional mathematical statistics method.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1986

S. Rakheja and S. Sankar

The non‐linear damping mechanisms are expressed in two general forms: velocity dependent and displacement dependent. The non‐linear damping phenomena are expressed by an array of…

Abstract

The non‐linear damping mechanisms are expressed in two general forms: velocity dependent and displacement dependent. The non‐linear damping phenomena are expressed by an array of ‘local constants’, whose value depends upon excitation frequency, excitation amplitude, and type of non‐linearity. Thus, the non‐linear system is replaced by several localized linear systems corresponding to every discrete frequency and amplitude of excitation. Each of the localized linear systems, thus formulated, characterizes the response behaviour of the original non‐linear system, quite accurately in the vicinity of the specific frequency and amplitude of excitation. An algorithm is developed, which expresses the non‐linear damping by an array of ‘local constants’. The algorithm then employs the usual linear design tools to generate the response characteristics almost identical to the response behaviour of the non‐linear system.

Details

Engineering Computations, vol. 3 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 13 November 2017

Zhiwei Wang, Yi Liu and Feng Wang

The purpose of this paper is to establish a simplified model of the closed hydrostatic guideway for the rapid analysis of static and dynamic characteristics. Further, the…

Abstract

Purpose

The purpose of this paper is to establish a simplified model of the closed hydrostatic guideway for the rapid analysis of static and dynamic characteristics. Further, the influence of compressibility and dynamic frequency are taken into consideration in the new dynamic model.

Design/methodology/approach

The new model is based on the second kind of Lagrange equation. In this model, the closed hydrostatic guideway is supported by 12 pads, and each oil pad is equivalent to a nonlinear spring-damper system. The equivalent spring coefficient and damper coefficient of the oil pad are extracted by the three different equivalent methods. Finally, the validation experiments of step load response and dynamic stiffness are conducted on a hydrostatic guideway.

Findings

For solving the step response, the linear spring-damper model and the nonlinear spring-damper Model 1 are better than the nonlinear spring-damper Model 2. The accuracy of the three methods are very high for static stiffness calculation. For the calculation of dynamic stiffness, the nonlinear spring-damper Model 2 is better than the nonlinear spring-damper Model 1. The linear spring-damper model has low precision for dynamic stiffness calculation, especially at high frequency. The accuracy of the new model is validated by experiments.

Originality/value

The equivalent method of nonlinear spring-damper system has higher accuracy. Different equivalent methods should be adopted for different load types. The computational speeds of the new dynamic model with the three methods are much better than finite element method (about ten times).

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 December 2023

Shahe Liang, Zhiqiang Zhang and Aiqun Li

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design…

Abstract

Purpose

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design structure are introduced, and the two-stage and multi-stage controllable damping methods are proposed.

Design/methodology/approach

The theoretical calculation formulas of the damping force of power-law fluid variable damping viscous damper at elongated holes are derived, aiming to provide a theoretical basis for the development and application of variable damping viscous dampers. For the newly developed variable damping viscous damper, the dynamic equations for the seismic reduction system with variable damping viscous dampers under a multi-degree-of-freedom system are established. A feasible calculation and analysis method is proposed to derive the solution process of time history analysis. At the same time, a program is also developed using Matlab. The dynamic full-scale test of a two-stage variable damping viscous damper was conducted, demonstrating that the hysteresis curve is complete and the working condition is stable.

Findings

Through the calculation and analysis of examples, the results show that the seismic reduction effect of high and flexible buildings using the seismic reduction system with variable damping viscous dampers is significant. The program developed is used to analyze the seismic response of a broadcasting tower using a variable damping TMD system under large earthquakes. The results indicate that the installation of variable damping viscous dampers can effectively control the maximum inter-story displacement response of TMD water tanks and can effectively consume seismic energy.

Originality/value

This method can provide a guarantee for the safe and effective operation of TMD in wind and vibration control.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 20 July 2010

A. Caignot, P. Ladevèze, D. Néron and J.‐F. Durand

The purpose of this paper is to propose a virtual testing strategy in order to predict damping due to the joints which are present in the ARIANE 5 launcher.

Abstract

Purpose

The purpose of this paper is to propose a virtual testing strategy in order to predict damping due to the joints which are present in the ARIANE 5 launcher.

Design/methodology/approach

Since engineering finite element codes do not give satisfactory results, either because they are too slow or because they cannot calculate dissipation accurately, a new computational tool is introduced based on the LArge Time INcrement (LATIN) method in its multiscale version.

Findings

The capabilities of the new strategy are illustrated on one of the joints of ARIANE 5. The damping predicted virtually is compared to experimental results, and the approach appears promising.

Originality/value

The tool which has been developed gives access to calculations which were previously unaffordable with standard computational codes, which may improve the design process of launchers. The code is transferred into ASTRIUM‐ST, where it is being used to build a database of dissipations in the joints of the ARIANE 5 launcher.

Details

Engineering Computations, vol. 27 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 May 2023

Cheng Xue, Zhaowang Xia, Xingsheng Lao and Zhengqi Yang

The purpose of this study is to provide some references about applying the semi-active particle damper to enhance the stability of the pipe structure.

86

Abstract

Purpose

The purpose of this study is to provide some references about applying the semi-active particle damper to enhance the stability of the pipe structure.

Design/methodology/approach

This paper establishes the dynamical models of semi-active particle damper based on traditional dynamical theory and fractional-order theory, respectively. The semi-active particle damping vibration isolation system applied in a pipe structure is proposed, and its analytical solution compared with G-L numerical solution is solved by the averaging method. The quantitative relationships of fractional-order parameters (a and kp) are confirmed and their influences on the amplitude-frequency response of the vibration isolation system are analyzed. A fixed point can be obtained from the amplitude-frequency response curve, and the optimal parameter used for improving the vibration reduction effect of semi-active particle damper can be calculated based on this point. The nonlinear phenomenon caused by nonlinear oscillators is also investigated.

Findings

The results show that the nonlinear stiffness parameter p will cause the jump phenomenon while p is close to 87; with the variation of nonlinear damping parameter μ, the pitchfork bifurcation phenomenon will occur with an unstable branch after the transient response; with the change of fractional-order coefficient kp, a segmented bifurcation phenomenon will happen, where an interval that kp between 18.5 and 21.5 has no bifurcation phenomenon.

Originality/value

This study establishes a mathematical model of the typical semi-active particle damping vibration isolation system according to fractional-order theory and researches its nonlinear characteristics.

Article
Publication date: 30 July 2020

Xu Li, Jun Li, Xiaoyi Zhang, Jianfeng Gao and Chao Zhang

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Abstract

Purpose

Viscous dampers are commonly used in large span cable-stayed bridges to mitigate seismic effects and have achieved great success.

Design/methodology/approach

However, the nonlinear analysis on damper parameters is usually computational intensive and nonobjective. To address these issues, this paper proposes a simplified method to determine the viscous damper parameters for double-tower cable-stayed bridges. An empirical formula of the equivalent damping ratio of viscous dampers is established through decoupling nonclassical damping structures and linearization of nonlinear viscous dampers. Shaking table tests are conducted to verify the feasibility of the proposed method. Moreover, this simplified method has been proved in long-span cable-stayed bridges.

Findings

The feasibility of this method is verified by the simplified model shaking table test. This simplified method for determining the parameters of viscous dampers is verified in cable-stayed bridges with different spans.

Originality/value

This simplified method has been validated in cable-stayed bridges with various spans.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 October 2023

Mallikarjun S. Bhandiwad, B.M. Dodamani and Deepak M.D.

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or…

Abstract

Purpose

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation.

Design/methodology/approach

The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008).

Findings

The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency.

Research limitations/implications

The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank.

Originality/value

The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 June 2023

Liu Fuyu, Yu Bo, Li Yongfan, Ren Baojie, Hao Muming, Li Zhentao and Li Xiaozu

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Abstract

Purpose

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Design/methodology/approach

The steady-state and perturbation Reynolds control equations of liquid films were established. The film pressure and the liquid film dynamic coefficients were obtained, impacts of groove structures on the liquid film dynamic characteristic coefficients were analyzed.

Findings

The analysis results indicate that the axial dynamic stiffness and damping coefficients of the liquid film seal with inclined elliptical grooves are far greater than those of the angular directions. Furthermore, the dynamic stiffness coefficient of the liquid film with the nonclosed inclined elliptical grooves is higher than those with the closed grooves, whereas the dynamic damping coefficient of the liquid film is lower.

Originality/value

The effects of inclined elliptical groove structures on the dynamic characteristics of the liquid film seal are investigated. The results presented are expected to enrich the theoretical basis of optimizing the dynamic performance of liquid film seals with textures.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 3000