Search results

1 – 10 of 134
Article
Publication date: 4 February 2014

Chen Wengang, Ge Shirong, Pang Lianyun and Zhang Yonghai

Three types of pattern on the monocrystalline silicon surface were prepared by using laser surface processing equipment. The DLC film and Si-DLC film on the patterning surface…

Abstract

Purpose

Three types of pattern on the monocrystalline silicon surface were prepared by using laser surface processing equipment. The DLC film and Si-DLC film on the patterning surface were deposited by using PECVD-2D plasma chemical vapor deposition sets. The paper aims to discuss these issues.

Design/methodology/approach

The tribological properties of the films were investigated by using the UMT-2 micro friction and wear tester. The surface topography, composition, hardness and elastic modular of the films were determined by Raman spectrum, nano mechanics tester and three-dimensional topography instrument. The worn surface topographies of the surface patterning films were tested by scanning electron microscopy.

Findings

The results show that the patterning monocrystalline silicon substrate surface has good anti-friction property under low load. The patterning DLC film and Si-DLC film surface have very good anti-friction property under all the test loads. The reason of these results is that the surface patterning film not only reduces the real contact area of the friction pairs but also has low surface bonding force.

Originality/value

This paper prepared three kinds of microscopic patterns on the monocrystalline silicon surface by using laser surface processing equipment. And then deposited DLC film and Si-DLC film on the patterning surface. All kinds of surface patterning monocrystalline silicon had very good anti-friction property under low load. And all kinds of surface patterning nano-hard film had perfect anti-friction property under all test loads.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2001

Etsuo Marui and Hiroki Endo

In this study, we examined the improvements in friction and wear properties between steels for aircraft parts, resulting from the surface modifications with electroless plating…

Abstract

In this study, we examined the improvements in friction and wear properties between steels for aircraft parts, resulting from the surface modifications with electroless plating film and amorphous carbon coating or diamond‐like carbon (DLC) coating. Friction and wear properties are measured using a pin‐on‐flat wear‐testing machine with reciprocating sliding. From measurements of the coefficient of friction and wear amount, observations during sliding motion and visual inspection of wear traces, the following was clarified. A remarkable improvement of friction and wear properties is realized by DLC coating. Electroless plating increased the hardness of the plated surface considerably. However, it does not contribute to improved friction and wear properties.

Details

Industrial Lubrication and Tribology, vol. 53 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 September 2014

Edward Ng and Sujeet Kumar Sinha

The purpose of this study is to investigate the effects of zinc dialkyl dithiophophates (ZDDP) and ash-less triphenyl phosphorothionate (TPPT) on hydrogen-free diamond-like carbon…

Abstract

Purpose

The purpose of this study is to investigate the effects of zinc dialkyl dithiophophates (ZDDP) and ash-less triphenyl phosphorothionate (TPPT) on hydrogen-free diamond-like carbon (DLC) coatings. For many years, ZDDP have traditionally been used in engine oils as antiwear (AW) and extreme pressure (EP) additives. However, additives containing sulfated ash, phosphorus and sulfur (SAPS) have a detrimental effect on the exhaust after-treatment device found on modern vehicles. Besides the automotive industry, DLC is also used in hydraulic applications where zinc-free and ash-less hydraulic fluids have gradually gained popularity in recent years.

Design/methodology/approach

The tribological tests were performed using a disk-on-cylinder tribometer, where the stationary hydrogen-free DLC-coated steel disk formed a line contact with an uncoated rotating steel shaft under lubricated conditions.

Findings

It was found that TPPT and ZDDP separately at a concentration of 1.0 wt% increased the amount of friction of the base oil by approximately four times. TPPT appeared more effective than ZDDP in minimizing wear on the DLC-coated surface. Also, primary ZDDP seemed to have a more detrimental effect on the DLC-coated surface compared to a mixture of primary and secondary ZDDP. With regard to surface roughness of the hydrogen-free DLC-coated surface, the values corresponding to a lubricant containing TPPT were lower than those obtained for a lubricant with ZDDP and a lubricant without any additive.

Originality/value

This is the first report on the effects of ZDDP and ash-less TPPT on the tribology of hydrogen-free DLC coatings.

Details

Industrial Lubrication and Tribology, vol. 66 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Abdul Mannan, Mohd Faizul Mohd Sabri, M.A. Kalam and H.H. Masjuki

The purpose of this study is to investigate the tribological properties of tetrahedral diamond-like carbon (DLC) films in self-mated contacts in the presence of additivated and…

Abstract

Purpose

The purpose of this study is to investigate the tribological properties of tetrahedral diamond-like carbon (DLC) films in self-mated contacts in the presence of additivated and non-additivated vegetable oils. DLC films have high practical value due to low friction and low wear properties. On the other hand, vegetable oils are considered to be lubricants for future due to its resource renewability and biodegradability. Sometimes different chemical agents are added to vegetable oils to further improve its tribological properties. Thus, the tribological study of DLC films against additivated oils becomes important.

Design/methodology/approach

The tribology tests were conducted in a four ball tribo-meter under the boundary lubricated conditions.

Findings

Ta-C DLC exhibited 80 per cent lower wear rate under Zinc dialkyldithiophosphates (ZDDP)-added oil compared to that of base oil. In contrast, the friction coefficient under additivated oil was slightly higher than the base oil lubricated case. Moreover, the carbonyl band area as well as the viscosity change of ZDDP-added oil was much smaller than that of base oil. Therefore, ZDDP reduced the wear of DLC film and prevented the oxidation of base oil during tribotests.

Originality/value

This is the first work on the tribological properties of ta-C DLC lubricated with corn oil with and without anti-wear additives.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Jun Liu, Zhinan Zhang, Zhe Ji and Youbai Xie

This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against…

Abstract

Purpose

This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against Ti-6Al-4V ball under dry and lubricated conditions.

Design/methodology/approach

The friction and wear mechanisms are analyzed by scanning electron microscope, energy dispersive spectroscopy and Raman spectroscopy.

Findings

The results show that as reciprocating frequency increases under lubricated conditions, the friction coefficient decreases first and then increases. When the reciprocating frequency is 2.54 Hz, the value of friction coefficient reaches the minimum. The friction reduction is because of the transformation from sp3 to sp2, the formation of transfer layer on Ti-6Al-4V ball and the reduction in viscous friction, whereas the increase of friction coefficient is related to wear. In dry conditions, the friction coefficient is between 0.06 and 0.1. And, the service life of H-DLC coating decreases with the increase in reciprocating frequency and normal load.

Research limitations/implications

It is confirmed that adding the lubricant could prolong the service life of H-DLC coating and reduce friction and wear efficiently. And, the wear mechanisms under dry and lubricated conditions encompass abrasive wear and adhesive wear.

Originality/value

The results are helpful for application of diamond-like carbon coating.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2019

Feng Cheng, Weixi Ji and Junhua Zhao

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate…

Abstract

Purpose

The disbonding of DLC coating is a main failure mode in the high-speed cavitation condition, which shortens the service life of the bearing. This study aims to investigate influence of adhesion strength on cavitation erosion resistance of DLC coating.

Design/methodology/approach

Three DLC coatings with different adhesion strengths were grown on the 304 steel surfaces by using a cathodic arc plasma deposition method. Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of a DLC coating. The cavitation mechanism of the substrate-coating systems was further discussed by means of surface analyses.

Findings

The results indicated that, the residual stress decreased and then increased with the increasing DLC coating thickness from 1 µm to 2.9 µm, and the lower residual stress can improve the adhesion strength of the DLC coating to the substrate. It was also concluded that, the plastic deformation as well as the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion strength. However, lower residual stress and better adhesion strength could help resist the occurrence of the coating fracture.

Originality/value

Cavitation tests were performed by using a vibratory test rig to investigate the influence of adhesion strength on cavitation erosion resistance of the DLC coating. The plastic deformation and the fracture occurred on the DLC coating surface at the same time, owing to higher residual stress and poorer adhesion of coating. Lower residual stress and better adhesion of coating could resist the occurrence of the DLC coating fracture.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2015

Luciano Castro Lara, Henara Costa and José Daniel Biasoli de Mello

This paper aims to analyse the influence of the thickness of different layers [diamond-like-carbon (DLC) and chromium nitride (CrN)] on the sliding wear behaviour of a…

Abstract

Purpose

This paper aims to analyse the influence of the thickness of different layers [diamond-like-carbon (DLC) and chromium nitride (CrN)] on the sliding wear behaviour of a multifunctional coating on AISI 1020 substrates. When small and cheap components need to be manufactured in large scale, they are often produced using soft metals, such as unhardened low carbon steels and pure iron.

Design/methodology/approach

Two families, one with thicker films and the other with thinner films, were deposited onto a soft carbon steel substrate by plasma-enhanced chemical vapour deposition (PECVD). Reciprocating linear tests with incremental loading assessed the durability of the coatings. In addition, friction coefficient and wear rates of both specimens and counterbodies were measured at a constant load.

Findings

Thinner layers presented lower sliding wear rates (four-five times lower) for both specimens and counterbodies, less spalling and protective tribolayers on the wear tracks.

Originality/value

Although multilayered CrN–DLC coatings on relatively hard substrates such as HSS and cemented carbide tools are already a proven technology, much less is known about its deposition on a much softer substrate such as low carbon steel. In previous works, we have analysed the influence of layer thickness on hardness and scratch resistance of the same coatings. This paper presents results for their performance under wear sliding conditions using an original approach (three-dimensional triboscopic maps) for two distinct configurations (increasing load and constant load).

Details

Industrial Lubrication and Tribology, vol. 67 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2019

Xinbo Wang, Zhongwei Yin, Hulin Li, Gengyuan Gao and Jun Cao

The purpose of this paper is to study the frictional behaviors of CuAl10Fe3 journal bearings sliding against chromium electroplated 42CrMo shafts and diamond-like carbon-coated…

Abstract

Purpose

The purpose of this paper is to study the frictional behaviors of CuAl10Fe3 journal bearings sliding against chromium electroplated 42CrMo shafts and diamond-like carbon-coated 42CrMo shafts, respectively, under two different conditions and to compare the two kinds of friction pairs.

Design/methodology/approach

All journal bearing samples underwent 24 h running-in and repeatability verification. Then, the journal bearing friction experiments were carried out under two different conditions. After testing, the torques, friction coefficients, power consumptions and other parameters were obtained.

Findings

The pair of CuAl10Fe3 journal bearing and diamond-like carbon–coated shaft could drive greater load to start up than the pair of CuAl10Fe3 journal bearing and chromium electroplated 42CrMo shaft, but it had greater power consumption during the steady running period under the identical condition. With the changing of specific pressure or rotational speed, the friction coefficients had different variations. The frictional oscillations appeared at 32 rotations per minute under heavy loads for both kinds of pairs, the oscillation frequencies were equal to rotational frequency of the test shaft and the oscillation amplitude for diamond-like carbon coating was much greater.

Originality/value

These results have guiding significance for practical industrial applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Delin Chen

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Abstract

Purpose

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Design/methodology/approach

The microtexture was processed using laser processing, while the diamond-like carbon (DLC) film was applied through magnetron sputtering; the experimental platform of friction vibration was established, the frictional and vibrational properties of different geometric parameters were tested; the data signals of vibrational acceleration and frictional torque were collected and processed using data acquisition instrument. The entropy characteristic parameters of 3D vibrational acceleration were extracted based on wavelet packet decomposition method. The end-face topography was measured with ST400 three-dimensional noncontact surface topography instrument.

Findings

The geometry of pits plays a key role in influencing friction performance; the permutation entropy and fuzzy entropy of the vibration acceleration signal changed with variations in microtextured parameters. A textured surface with appropriately size parameters can trap debris, enhance the dynamic pressure effect, reduce impact between the friction interfaces and improve the frictional vibrational performance. In this research, microtextured surface with Φ150 µm-10% and Φ200 µm-5% can effectively reduce friction and vibration between the end faces of a dry gas seal.

Originality/value

DLC film improves the hardness of seal ring end face, and microtexture improves the dynamic effect; the tribological behavior monitoring can be realized by analyzing the characteristics of vibration acceleration sensitive parameter with friction state. The findings will provide a basis for further research in the field of tribology and the microtexture optimization of dry gas seal ring end face.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0389/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 October 2023

Zonglin Lei, Zunge Li and Yangyi Xiao

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Abstract

Purpose

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Design/methodology/approach

For this purpose, the mechanical properties of a-C:H, ta-C and AlCrSiN coatings are characterized by nano-indentation and scratch tests. The friction and wear behaviors of these three coatings are evaluated by ball-on-disc tribological experiments under dry contact conditions.

Findings

The results show that the a-C:H coating has the highest coating-substrate adhesion strength (495 mN) and the smoothest surface (Ra is about 0.045 µm) compared with the other two coatings. The AlCrSiN coating shows the highest mean coefficient of friction (COF), whereas the ta-C coating exhibits the lowest one (steady at about 0.16). The carbon-based coatings possess excellent self-lubricating properties compared with nitride ceramic ones, which effectively reduce the COF by about 64%. The major failure mode of carbon-based coatings in dry contact is slight abrasive wear. The damage of AlCrSiN coating is mainly adhesive wear and abrasive wear.

Originality/value

It is suggested that the carbon-based film can effectively improve the friction-reducing and wear resistance performance of the gear steel surface, which has a promising application prospect in the mechanical transmission field.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0129/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 134