Search results

1 – 10 of 33
Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2024

Shujing Li, Xiaojuan Huang, Zhiheng He, Yongxiang Liu, Hui Qu and Jing Wu

The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.

Abstract

Purpose

The purpose of this paper is to introduce a double-stator switched reluctance machine (DS-SRM) for electric vehicles (EVs) and to propose multi-mode operations for this machine.

Design/methodology/approach

Analysis of flux linkage distributions and torque characteristics using finite element method (FEM). Building a dynamic simulation model based on electromagnetic characteristics, mathematical equations and mechanical motion equations of the DS-SRM drive system. The paper proposes multi-mode operations (inner-stator excitation mode, outer-stator excitation mode and double-stator excitation mode) based on motor working regions. It also conducts simulation and experimental results to verify the effectiveness of the proposed multi-mode operations strategies and control schemes.

Findings

There is almost no electromagnetic coupling between the inner and outer stators due to the specially designed rotor structure and optimized windings polarity configuration. Analysis of flux linkage distributions and torque characteristics verified the independence of inner and outer stators. Proposal of multi-mode operations and corresponding control rules achieved the smooth switching between different modes.

Originality/value

The paper introduced the DS-SRM for EVs and proposed multi-mode operations, along with control rules, to optimize its performance. The specially designed rotor structure, optimized winding polarity configuration, and the proposed multi-mode operations contribute to the originality of the research.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 April 2024

Serhat Yuksel, Hasan Dincer and Alexey Mikhaylov

This paper aims to market analysis on the base many factors. Market analysis must be done correctly to increase the efficiency of smart grid technologies. On the other hand, it is…

Abstract

Purpose

This paper aims to market analysis on the base many factors. Market analysis must be done correctly to increase the efficiency of smart grid technologies. On the other hand, it is not very possible for the company to make improvements for too many factors. The main reason for this is that businesses have constraints both financially and in terms of manpower. Therefore, a priority analysis is needed in which the most important factors affecting the effectiveness of the market analysis will be determined.

Design/methodology/approach

In this context, a new fuzzy decision-making model is generated. In this hybrid model, there are mainly two different parts. First, the indicators are weighted with quantum spherical fuzzy multi SWARA (M-SWARA) methodology. On the other side, smart grid technology investment projects are examined by quantum spherical fuzzy ELECTRE. Additionally, facial expressions of the experts are also considered in this process.

Findings

The main contribution of the study is that a new methodology with the name of M-SWARA is generated by making improvements to the classical SWARA. The findings indicate that data-driven decisions play the most critical role in the effectiveness of market environment analysis for smart technology investments. To achieve success in this process, large-scale data sets need to be collected and analyzed. In this context, if the technology is strong, this process can be sustained quickly and effectively.

Originality/value

It is also identified that personalized energy schedule with smart meters is the most essential smart grid technology investment alternative. Smart meters provide data on energy consumption in real time.

Details

International Journal of Innovation Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 April 2024

Essaki Raj R. and Sundaramoorthy Sridhar

This paper aims at developing an improved method, based on binary search algorithm (BSA) for the steady-state analysis of self-excited induction generators (SEIGs), which are…

Abstract

Purpose

This paper aims at developing an improved method, based on binary search algorithm (BSA) for the steady-state analysis of self-excited induction generators (SEIGs), which are increasingly used in wind energy electric conversion systems. The BSA is also compared with linear search algorithm (LSA) to bring out the merits of BSA over LSA.

Design/methodology/approach

All the parameters of SEIG, including the varying core loss of the machine, have been considered to ensure accuracy in the predetermined performance values of the set up. The nodal admittance method has been adopted to simplify the equivalent circuit of the generator and load. The logic and steps involved in the formulation of the complete procedure have been illustrated using elaborate flowcharts.

Findings

The proposed approach is validated by the experimental results, obtained on a three-phase 240 V, 5.0 A, 2.0 kW SEIG, which closely match with the corresponding predicted performance values. The analysis is shown to be easy to implement with reduced computation time.

Originality/value

A novel improved and simplified technique has been formulated for estimating the per unit frequency (a), magnetizing reactance (Xm) and core loss resistance (Rm) of the SEIG using the nodal admittance of its equivalent circuit. The accuracy of the predetermined performance is enhanced by considering the SEIG’s varying core loss. Only simple MATLAB programming has been used for adopting the algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Book part
Publication date: 17 May 2024

Abstract

Details

International Trade, Economic Crisis and the Sustainable Development Goals
Type: Book
ISBN: 978-1-83753-587-3

Article
Publication date: 1 May 2024

Mamun Mishra and Bibhuti Bhusan Pati

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability…

Abstract

Purpose

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability, which are the two major issues with the islanding detection methods, are addressed here. The purpose of this paper is to devise an islanding detection method with zero NDZ and, which will be applicable to all types of renewable energy sources using the sequence components of the point of common coupling voltage.

Design/methodology/approach

Here, a parameter using the sequence components is derived to devise an islanding detection method. The parameter derived from the sequence components of point of common coupling voltage is analysed using wavelet transform. Various operating conditions, such as islanding and non-islanding, are considered for several test systems to evaluate the performance of the proposed method. All the simulations are carried out in Simulink/MATLAB environment.

Findings

The results showed that the proposed method has zero NDZ for both inverter- and synchronous generator-based renewable energy sources. In addition, the proposed method works satisfactorily as per the IEEE 1547 standards requirement.

Originality/value

Performance of the proposed method has been tested in several test systems and is found to be better than some conventional methods.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 March 2023

Tapas Kumar Mohapatra and Asim Kumar Dey

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to…

Abstract

Purpose

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to eliminate both sub and inter harmonics (SIH) and electromagnetic interference (EMI). The total harmonic distortion (THD) of the load current also reduces in comparison to standard HCCT and modified technique-based existing HCCT.

Design/methodology/approach

Matlab simulation has been carried out to develop an SPVSI model and the unique algorithm-based HCCT. The same platform has also been used to develop a few existing HCCTs such as standard, dual-band and modified. The switching frequency and harmonic analysis of load currents for all the HCCTs have been compared in the paper. The hardware implementation of the proposed algorithm-based HCCT was also verified and compared with the simulation results.

Findings

The proposed unique algorithm-based HCCT provides the benefits of both unipolar and bipolar switching techniques. It reduces the switching frequency as unipolar switching scheme and eliminates the EMI. It also reduces THD and nullifies SIH of the load current. This enables an improvement in the overall performance and efficiency of the motor.

Practical implications

This proposed HCCT eliminates the SIH and improves the overall efficiency of the motor, hence can prevent overheating, vibration, acoustic noise, pulsating torque and braking of the rotor shaft of the motor and increasing the reliability of the system.

Social implications

It can be implemented for the motors that are used in household applications and electric vehicles through one-phase inverter.

Originality/value

This proposed HCCT has detected the zero crossing point of reference current, allowed samples and shifted the necessary amount of hysteresis band at zero crossing region to eliminate SIH and THD.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 April 2024

Kalpana Chandrasekar and Varisha Rehman

Global brands have become increasingly vulnerable to external disruptions that have negative spillover effects on consumers, business and brands. This research area has recently…

Abstract

Purpose

Global brands have become increasingly vulnerable to external disruptions that have negative spillover effects on consumers, business and brands. This research area has recently garnered interest post-pandemic yet remains fragmented. The purpose of this paper is to recognize the most impactful exogenous brand crisis (EBC) and its affective and behavioural impact on consumers.

Design/methodology/approach

In Study 1, we applied repertory grid technique (RGT), photo elicitation method and ANOVA comparisons, to identify the most significant EBC, in terms of repercussions on consumer purchases. In Study 2, we performed collage construction and content analysis to ascertain the impact of the identified significant crisis (from Study 1) on consumer behaviour in terms of affective and behavioural changes.

Findings

Study 1 results reveal Spread-of-diseases and Natural disaster to be the most impactful EBC based on consumer’s purchase decisions. Study 2 findings uncover three distinct themes, namely, deviant demand, emotional upheaval and community bonding that throws light on the affective and behavioural changes in consumer behaviour during the two significant EBC events.

Research limitations/implications

The collated results of the two studies draw insights towards understanding the largely unexplored conceptualisation of EBC from a multi-level (micro-meso-macro) perspective. The integrated framework drawn, highlight the roles and influences of different players in exogenous brand crisis management and suggests future research agendas based on theoretical underpinnings.

Originality/value

To the best of our knowledge, this is the first study which identifies the most important EBC and explicates its profound impact on consumer purchase behaviour, providing critical insights to brand managers and practitioners to take an inclusive approach towards exogenous crises.

Details

Marketing Intelligence & Planning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-4503

Keywords

1 – 10 of 33