Search results

1 – 10 of 220
Article
Publication date: 16 January 2007

A. Kalendová, D. Veselý and P. Kalenda

The purpose of this paper is to synthesise X2TiO4 spinel‐type anticorrosion pigments and YTiO3, perovskite‐type anticorrosion pigments, where X = Zn, Mg, Ca, Sr; Y = Ca for metal…

Abstract

Purpose

The purpose of this paper is to synthesise X2TiO4 spinel‐type anticorrosion pigments and YTiO3, perovskite‐type anticorrosion pigments, where X = Zn, Mg, Ca, Sr; Y = Ca for metal protective paints.

Design/methodology/approach

Anticorrosion pigments were synthesised from oxides or carbonates at high temperature. The following pigments were synthesised: TiO2 · ZnO, 2TiO2 · ZnO, TiO2 · 2ZnO, TiO2 · MgO, TiO2 · CaO, TiO2 · ZnO · MgO, and TiO2 · ZnO · SrO. The pigments obtained were characterised by means of X‐ray diffraction analysis, measurement of particle sizes and scanning electron microscopy. The anticorrosion pigments synthesised were used to produce epoxy coatings with PVC = 10 per cent for each synthesised pigment. The coatings were tested for physical‐mechanical properties and in corrosion atmospheres. The corrosion test results were compared with those of alumino zinc phosphomolybdate.

Findings

A spinel or perovskite structure was found in the pigments synthesised. High anticorrosion efficiency was identified in all the synthesised pigments, the highest efficiency being demonstrated in the TiO2 · ZnO pigment of spinel structure and in the TiO2 · CaO pigment of perovskite structure.

Practical implications

The pigments synthesised can be conveniently used to protect metal bases from corrosion.

Originality/value

The use of pigments synthesised in anticorrosion coatings for metal protection presents a new approach. Its benefits are the use and the method of synthesising the anticorrosion pigments that do not contain heavy metals and that are acceptable for the environment.

Details

Pigment & Resin Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 March 2009

A. Kalendova and D. Vesely

The purpose of this paper is to synthesize MeO‐type pigments, focusing on the oxides containing zinc and magnesium.

Abstract

Purpose

The purpose of this paper is to synthesize MeO‐type pigments, focusing on the oxides containing zinc and magnesium.

Design/methodology/approach

Oxides ZnO and MgO were synthesized, their morphology was evaluated, and their impact on the physical properties of the paint film were assessed. A pigment of ZnO/core‐shell type also was synthesized. The physical‐chemical property of the synthesized pigments and the anticorrosion efficiencies of the paint films pigmented by them were determined. The binder used in the researched coatings was epoxy‐ester resin.

Findings

The shape of the particles was identified in the synthesized pigments. X‐ray diffraction analysis revealed the degree of precipitation and lattice parameters. All of the synthesized pigments had good anticorrosion efficiency in an epoxyester coating.

Practical implications

The synthesized pigments can be used conveniently in coatings protecting metal substrates against corrosion.

Originality/value

Of benefit is the fact that the synthesized pigments do not contain any environmentally harmful substances.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 June 2008

A. Kalendová and D. Veselý

The purpose of this paper is to synthesize anticorrosion pigments ZnFe2O4 from diverse raw materials of various shapes and size of primary particles.

1364

Abstract

Purpose

The purpose of this paper is to synthesize anticorrosion pigments ZnFe2O4 from diverse raw materials of various shapes and size of primary particles.

Design/methodology/approach

Anticorrosion pigments were synthesized through a high‐temperature process during a solid phase. Zinc ferrites were prepared from hematite (α‐Fe2O3), goethite (α‐FeO.OH), magnetite (Fe3O4), and specularite (Fe2O3) entering into reaction with zinc oxide at temperatures ranging from 600 up to 1,100°C. The nature of the initial raw material, primarily the shape of its particles, affects the shape of the particles of the synthesized zinc ferrite. The formulated zinc ferrites had a rod‐shape, lamellar, and/or isometric shape. The shape of the particles of synthesized zinc ferrites was studied with regard to its effects on the mechanical and corrosion resistance of organic coatings. The obtained pigments were characterized by means of X‐ray diffraction analysis and scanning electron microscopy. The synthesized anticorrosion pigments were used to prepare epoxy coatings and water‐borne styrene‐acrylate coatings that were subjected to post‐application tests for physical‐mechanical properties and anticorrosion properties.

Findings

The shape of the particles was identified in the synthesized pigments. X‐ray diffraction analysis revealed the degree of precipitation and lattice parameters. All of the synthesized pigments had good anticorrosion efficiency in an epoxy and in styrene‐acrylate coatings. Compared with a commercially used anticorrosion pigment, their protective power in coatings was demonstrably stronger.

Practical implications

The synthesized pigments can be used conveniently in coatings protecting metal bases against corrosion.

Originality/value

The synthesis of zinc ferrites with different particle shapes for applications in anticorrosion coatings provides a new way of protecting metals against corrosion. Of benefit is the fact that the synthesized pigments do not contain any environmentally harmful substances.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2008

P. Mošner, D. Veselý, L. Koudelka and A. Kalendová

The purpose of this paper is to synthesise glassy and crystalline Ca‐Zn and Sr‐Zn borophosphates.

Abstract

Purpose

The purpose of this paper is to synthesise glassy and crystalline Ca‐Zn and Sr‐Zn borophosphates.

Design/methodology/approach

Anticorrosion pigments on the basis of glassy and crystalline borophosphates formulated as 20CaO‐30ZnO‐20B2O3‐30P2O5 and 20SrO‐30ZnO‐20B2O3‐30P2O5 were synthesised. The pigments prepared were characterised by means of X‐ray diffraction and their physical‐chemical properties were determined. The pigments synthesised were used to prepare water‐borne styrene‐acrylate coatings with a 10 per cent anticorrosion pigment content. The coatings underwent corrosion tests in a humid environment with SO2 content and a test in a salt mist environment. The corrosion tests results were compared with industrially produced pigments.

Findings

As the glassy phase reduces the anticorrosion efficiency of the coatings with the Sr‐Zn borophosphate content decreases too. In case of the Ca‐Zn borophosphates, the maximum anticorrosion efficiency was detected with regard to a pigment containing 75 wt% of the glassy phase.

Practical implications

The pigments synthesised can be conveniently used in water‐borne coatings to protect metal bases from corrosion.

Originality/value

The application of the synthesised glassy‐crystalline borophosphate pigments in anticorrosion water‐borne coatings to protect metal bases from corrosion presents a new method. The use and the method of synthesising these anticorrosion pigments are beneficial.

Details

Pigment & Resin Technology, vol. 37 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 July 2007

A. Kalendová and D. Veselý

To synthesise anticorrosion pigments of a lamellar and core‐shell type based on Zn, Ca and Mg ferrites for metal protecting paints.

1505

Abstract

Purpose

To synthesise anticorrosion pigments of a lamellar and core‐shell type based on Zn, Ca and Mg ferrites for metal protecting paints.

Design/methodology/approach

The anticorrosion pigments were synthesised from oxides or carbonates at high temperature. The pigments synthesised had particles with a pronounced lamellar‐tubular shape consisting of MgFe2O4; Mg0.8Zn0.2Fe2O4; Mg0.6Zn0.4Fe2O4; Mg0.4Zn0.6Fe2O4; Mg0.2Zn0.8Fe2O4; ZnFe2O4; Ca0.2Zn0.8Fe2O4; and CaFe2O4. The other type of synthesised ferrite pigments were core‐shell anticorrosion pigments where a layer corresponding to the compositions including MgFe2O4/KAl3Si3O11; Mg0.8Zn0.2Fe2O4/KAl3Si3O11; Mg0.6Zn0.4Fe2O4/KAl3Si3O11; Mg0.4Zn0.6Fe2O4/KAl3Si3O11; Mg0.2Zn0.8Fe2O4/KAl3Si3O11; ZnFe2O4/KAl3Si3O11; Ca0.2Zn0.8Fe2O4/KAl3Si3O11; and CaFe2O4/KAl3Si3O11 was applied onto the core – white mica – by a chemical reaction. The pigments prepared were characterised by means of X‐ray diffraction analysis, particle size distribution measurement, and scanning electron microscopy. The anticorrosion pigments synthesised were used to formulate alkyd paints that were tested in corrosion atmospheres.

Findings

Lamellar particles were detected in the pigments prepared, whereas quality coverage of the core was identified in the core‐shell ferrites. Good anticorrosion efficiency was detected in all of the pigments synthesised.

Practical implications

The pigments synthesised can be conveniently utilised in paints to protect metal bases from corrosion.

Originality/value

The method of using the ferrites synthesised as metal protecting anticorrosion paints is new. Of great benefit are the application and the method of synthesising the anticorrosion pigments that do not contain any heavy metals and are environmentally friendly.

Details

Pigment & Resin Technology, vol. 36 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 May 2008

D. Veselý and A. Kalendová

The purpose of this paper is to describe the process of synthesizing lamellarly‐shaped anticorrosion pigments having a chemically active layer whose core consists of metal…

Abstract

Purpose

The purpose of this paper is to describe the process of synthesizing lamellarly‐shaped anticorrosion pigments having a chemically active layer whose core consists of metal aluminium on which a thin spinel film is synthesised.

Design/methodology/approach

Anticorrosion pigments were synthesised by reaction of metal aluminium lamellar particles whose surface was oxidised to Al2O3 during the first stage and by subsequent reaction with ZnO and/or MgO at 800‐1,150°C producing a thin spinel layer that is chemically bonded to the metal core of the pigment particles. Core‐shell pigments including MgAl2O4/Al, Mg0.8Zn0.2Al2O4/Al, Mg0.6Zn0.4Al2O4/Al, Mg0.4Zn0.6Al2O4/Al, Mg0.2Zn0.8Al2O4/Al and ZnAl2O4/Al were synthesised. The prepared pigments were characterised by means of X‐ray diffraction analysis and scanning electron microscopy. The synthesised anticorrosion pigments were used to prepare epoxy coatings that were tested upon application for their anticorrosion properties and resistance against a chemical environment.

Findings

The lamellar shape of the particles, as well as good‐quality coverage with a thin spinel layer, was identified in the prepared pigments. All of the synthesised pigments exhibit good anticorrosion efficiency in epoxy coatings. Compared to lamellar kaolin and metal core of aluminium without coverage, the protective function of the synthesised pigments in coatings is demonstrably better.

Practical implications

The synthesised pigments find convenient applications in coatings protecting metal bases from corrosion.

Originality/value

Synthesis of a spinel layer on the metal core of aluminium is a novel method; so is the application of these substances in coatings designed for the protection of metals from corrosion. Of great benefit is the fact that the synthesised pigments are free of any substances harmful to the environment.

Details

Pigment & Resin Technology, vol. 37 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2007

A. Kalendová and D. Veselý

This paper seeks to synthesize needle‐shaped anticorrosion pigments based on the ferrites of Zn, Ca and Mg for metal protecting paints.

1251

Abstract

Purpose

This paper seeks to synthesize needle‐shaped anticorrosion pigments based on the ferrites of Zn, Ca and Mg for metal protecting paints.

Design/methodology/approach

Anticorrosion pigments were synthesized from oxides or carbonates at hot temperatures. The following pigments were synthesized: ZnFe2O4, MgFe2O4, CaFe2O4, Mg0.2Zn0.8Fe2O4, and Ca0.2Zn0.8Fe2O4. The prepared pigments were characterized by means of X‐ray diffraction analysis, by measuring the distribution of particle size and by means of scanning electron microscopy. The synthesized anticorrosion pigments were used to formulate epoxy coatings with PVC = 10 per cent for the synthesized pigment and with the PVC/CPVC ratio = 0.3. The coatings were tested for physical‐mechanical properties and in corrosion atmospheres. The corrosion test results were compared with aluminium zinc phosphomolybdate.

Findings

The needle‐shaped particles were identified in the formulated pigments. It was found that all of the synthesized pigments had high anticorrosion efficiency comparable with that of Zn‐Al phosphomolybdate. The needle‐shaped particles markedly contributed to the advancement of the physical‐mechanical properties of epoxy coatings.

Practical implications

The synthesized pigments can be conveniently used in coatings protecting metal bases against corrosion.

Originality/value

The application of the synthesized pigments with the needle‐shaped particles in anticorrosion paints protecting metals presents a new method. The benefit of the application and method of synthesizing anticorrosion pigments is that they do not contain heavy metals and are acceptable for the environment.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 September 2010

A. Kalendová, D. Veselý and P. Kalenda

The paper aims to investigate the drying effect exhibited by pigments combined with a Co(II) salt of 2‐ethylhexanoic acid (Co(II)) in an alkyd resin modified by soya bean oil.

Abstract

Purpose

The paper aims to investigate the drying effect exhibited by pigments combined with a Co(II) salt of 2‐ethylhexanoic acid (Co(II)) in an alkyd resin modified by soya bean oil.

Design/methodology/approach

Paint hardening was studied by means of a method that follows the progress of alkyd film drying. Another important method was employed to monitor the gradually increasing hardness of the drying films. Hardness of thin films was measured by the Persos method. ZnO, ZnO nanoparticles, V2O5, ZnS and TiO2 were used to study the effect of solid inorganic pigments on alkyd film drying. The pigment particles were characterised by scanning electron microscopy. The investigated pigments were combined with a constant amount of the Co(II) drier that acts in the system as a homogeneous catalyst, while the investigated pigments played the role of heterogeneous catalysts.

Findings

Using certain pigments as catalysts in drying, alkyd resins brings about new findings concerning the function of fillers and pigments in paint films. ZnO nanoparticles substantially accelerate film drying and moreover, the resulting films exhibit substantially higher hardness than films containing other inorganic pigments. To prepare films exhibiting higher hardness within a shorter time, one may also use ZnO microparticles or ZnS. TiO2 and V2O5 were identified as pigments that either do not take part in the drying process or reduce the hardness of the resulting film.

Practical implications

The investigated catalytic system pigment/Co(II) drier can be advantageously used to accelerate the formation of alkyd paints modified by natural oils both for industrial and decorative purposes. It was established that hardness of paint films containing ZnO nanoparticles is twice as high as that of films containing only the Co(II) drier without any pigment. This finding makes new applications of alkyd paints possible in all instances where higher hardness is required.

Originality/value

Considering pigments as heterogeneous catalysts in systems producing films by the oxypolymerising mechanism is a new approach that gives rise to new and original solutions.

Details

Pigment & Resin Technology, vol. 39 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 December 2015

Tereza Hájková and Andrea Kalendova

– This paper aims to synthesise anticorrosion pigments containing molybdenum for paints intended for corrosion protection of metals.

Abstract

Purpose

This paper aims to synthesise anticorrosion pigments containing molybdenum for paints intended for corrosion protection of metals.

Design/methodology/approach

The anticorrosion pigments were prepared by high-temperature solid-state synthesis from the appropriate oxides, carbonates and calcium metasilicate. Stoichiometric molybdates and core-shell molybdates with a non-isometric particle shape containing Ca, Sr, Zn, Mg and Fe were synthesised. The pigments were examined by X-ray diffraction analysis and scanning electron microscopy. Paints based on an epoxy resin and containing the substances at a pigment volume concentration of 10 volume per cent were prepared. The paints were subjected to physico-mechanical tests and to tests in corrosion atmospheres. The corrosion test results were compared to those of the paint with a commercial pigment, which is used in many industrial applications.

Findings

The molybdate structure of each pigment prepared was elucidated. The core-shell molybdates exhibit a non-isometric particle shape. The pigments prepared were found to impart a very good anticorrosion efficiency to the paints. A high anticorrosion efficiency was found with the pigments Fe2(MoO4)3 and Fe2(MoO4)3/CaSiO3 and with Mg and Zn molybdates.

Practical implications

The pigments can be used for the formulation of paints intended for the corrosion protection of metals. The pigments also improve the paints’ physical properties.

Originality/value

The use of the pigments in anticorrosion paints for the protection of metals is new. The benefits include the use and the procedure of synthesis of the anticorrosion pigments which are free from heavy metals and are acceptable from the aspect of environmental protection. Moreover, the core-shell molybdates, whose high efficiency is comparable to that of the stoichiometric molybdates, have lower molybdenum contents.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 September 2015

Nivin M Ahmed, Walaa M. Abd El-Gawad, Elham A. Youssef and Eglal R. Souaya

The purpose of this paper is to present the preparation of core-shell ferrites/kaolin pigments and comparing their efficiency in protecting metal substrates to original ferrites…

Abstract

Purpose

The purpose of this paper is to present the preparation of core-shell ferrites/kaolin pigments and comparing their efficiency in protecting metal substrates to original ferrites which were also prepared. Core-shell structured particles are recently gaining lots of importance due to their exciting applications in different fields; these particles are constructed from cores and shells of different chemical compositions which show ultimately distinctive properties of varied materials different from their counterparts. The new core-shell pigment is based on shell of different ferrites that comprises only 10-20 per cent of the whole pigment on kaolin (cores) which is a cheap and abundant ore that comprises 80-90 per cent of the prepared pigment. The new pigments do not only comprise two different components, but they also contain pigment and extender in the same compound; their loadings in the paint formulations ranges from 50 and 75 per cent of the whole pigment. The work showed that these eco-friendly and cheap core-shell pigments are comparable in their efficiency to that of ferrites in protecting steel substrates.

Design/methodology/approach

The different ferrites and ferrites/kaolin pigments were characterized using different analytical and spectrophotometric techniques, such as X-ray fluorescence, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM/EDAX) and transmission electron microscopy (TEM). Evaluation of these pigments was done using international standard testing methods (ASTM). After evaluation, the pigments were incorporated in solvent-based paint formulations based on medium oil-modified soya-bean dehydrated castor oil alkyd resin. The physico-mechanical properties of dry films and their corrosion properties using accelerated laboratory test in 3.5 per cent NaCl for 28 days were determined.

Findings

The results of this work revealed that ferrite/kaolin core-shell pigments were close in their performance to that of the ferrite pigments in protection of steel, and at the same time, they verified good physico-mechanical properties.

Practical implications

Treated kaolin can be applied in many industries beside pigment manufacture and paint formulations; it can be applied as reinforcing filler in rubber, plastics and ceramic composites. Also, it is applied in paper filling, paper coatings and electrical insulation.

Originality/value

Ferrite and ferrite/kaolin are environmentally friendly and can replace other hazardous pigments (e.g. chromates) with almost the same quality in their performance; also, they can be used in industries other than paints, for example paper, rubber and plastics composites.

Details

Pigment & Resin Technology, vol. 44 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 220