To read the full version of this content please select one of the options below:

The properties of ZnFe2O4 as an anticorrosion pigment dependent upon the structure of initial Fe2O3

A. Kalendová (Department of Paints and Organic Coatings, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic)
D. Veselý (Department of Paints and Organic Coatings, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic)

Anti-Corrosion Methods and Materials

ISSN: 0003-5599

Article publication date: 27 June 2008

Abstract

Purpose

The purpose of this paper is to synthesize anticorrosion pigments ZnFe2O4 from diverse raw materials of various shapes and size of primary particles.

Design/methodology/approach

Anticorrosion pigments were synthesized through a high‐temperature process during a solid phase. Zinc ferrites were prepared from hematite (α‐Fe2O3), goethite (α‐FeO.OH), magnetite (Fe3O4), and specularite (Fe2O3) entering into reaction with zinc oxide at temperatures ranging from 600 up to 1,100°C. The nature of the initial raw material, primarily the shape of its particles, affects the shape of the particles of the synthesized zinc ferrite. The formulated zinc ferrites had a rod‐shape, lamellar, and/or isometric shape. The shape of the particles of synthesized zinc ferrites was studied with regard to its effects on the mechanical and corrosion resistance of organic coatings. The obtained pigments were characterized by means of X‐ray diffraction analysis and scanning electron microscopy. The synthesized anticorrosion pigments were used to prepare epoxy coatings and water‐borne styrene‐acrylate coatings that were subjected to post‐application tests for physical‐mechanical properties and anticorrosion properties.

Findings

The shape of the particles was identified in the synthesized pigments. X‐ray diffraction analysis revealed the degree of precipitation and lattice parameters. All of the synthesized pigments had good anticorrosion efficiency in an epoxy and in styrene‐acrylate coatings. Compared with a commercially used anticorrosion pigment, their protective power in coatings was demonstrably stronger.

Practical implications

The synthesized pigments can be used conveniently in coatings protecting metal bases against corrosion.

Originality/value

The synthesis of zinc ferrites with different particle shapes for applications in anticorrosion coatings provides a new way of protecting metals against corrosion. Of benefit is the fact that the synthesized pigments do not contain any environmentally harmful substances.

Keywords

Citation

Kalendová, A. and Veselý, D. (2008), "The properties of ZnFe2O4 as an anticorrosion pigment dependent upon the structure of initial Fe2O3", Anti-Corrosion Methods and Materials, Vol. 55 No. 4, pp. 175-190. https://doi.org/10.1108/00035590810887673

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited