Search results

1 – 10 of over 1000
Article
Publication date: 16 October 2018

Dariusz Ozimina, Monika Madej, Joanna Kowalczyk, Ewa Ozimina and Stanislaw Plaza

This study aims to determine the properties of a new non-toxic cutting fluid and compared with cutting fluid based on mineral oil.

Abstract

Purpose

This study aims to determine the properties of a new non-toxic cutting fluid and compared with cutting fluid based on mineral oil.

Design/methodology/approach

The tool wear was measured under dry and wet cutting conditions. The non-toxic cutting fluid was compared with cutting fluid based on mineral oil. The experiments were carried out using CTX 310 ECO numerical control lathe. The wear of the cutting tools was measured by means of stereo zoom microscopy (SX80), while the elements were identified through scanning electron microscopy (JSM 7100F). The workpiece surface texture was studied using a Talysurf CCI Lite non-contact 3D profiler. The contact wetting angle was established with a KSV CAM 100 tester.

Findings

The non-toxic cutting fluid has reached comparable coefficient of friction with a coolant containing mineral oil. The use of the non-toxic cutting fluid with low foaming tendency resulted in lower wear.

Practical implications

Machining processes require that cutting fluids be applied to reduce the tool wear and improve the quality of the workpiece surface. Cutting fluids serve numerous purposes such as they act as coolants and lubricants, remove chips and temporarily prevent corrosion of the product.

Originality/value

The investigations discussed in this paper have contributed to the development of non-toxic and environmentally friendly manufacturing because of the use of cutting fluid containing zinc aspartate and its comparison with commonly used cutting fluid.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 1998

Steve A. Hodges, Wendy M. Uphues and Mai T. Tran

Meticulous formulation is required to optimize performance of non‐toxic corrosion inhibitors. The proper loading level and pigment volume concentration must be obtained…

Abstract

Meticulous formulation is required to optimize performance of non‐toxic corrosion inhibitors. The proper loading level and pigment volume concentration must be obtained. The old adage “more is better” does not apply to these new pigments. While research is still underway to find the perfect replacement for leads and chromes, formulators today need techniques which will help them now. It has been found that several of today’s non‐toxic corrosion inhibitors can work synergistically with each other to produce performance greater than either one can alone. This paper will summarize some of the results found by the proper combination of non‐toxic anti‐corrosive agents.

Details

Pigment & Resin Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 November 2021

Divya V., Divya Jayan and Asoka Kumar

As there is a strong inducement to develop new colored inorganic materials to substitute the current industrial pigments that are based on toxic metals hazardous to health…

Abstract

Purpose

As there is a strong inducement to develop new colored inorganic materials to substitute the current industrial pigments that are based on toxic metals hazardous to health and the environment, the purpose of this paper is to invent environmentally benign rare earth-based colorants as viable alternatives to the traditional toxic pigment formulations. Herein, the authors developed a series of rare earth pigments having the general formula Ca0.1 Ln0.9 PO4 ( Ln = Y , Pr , mixed rare earth oxides, RE and Di). After studying all the optical properties, the authors have gone for some coloring application in plastic like PMMA.

Design/methodology/approach

The designed pigments were synthesized by traditional solid-state method. Stoichiometric amounts of each reagent were mixed in an agate mortar and the mixtures were calcined at optimized temperature 1000 °C for 4 h in electric furnace followed by auto–cooling. The samples were characterized by X-ray diffraction diffraction, UV–vis spectroscopy, scanning electron microscope (SEM), particle size distribution, color coordinates determination, acid/alkali test, thermo gravimetric (TG) analysis and CIE–1976 L*a*b* color scales. Among the various lanthanide ions and calcium ion as dopant, the pigment composition shows various hues ranges from green to yellow. The designed pigments consist of non–toxic elements and were further found to possess high thermal and chemical stability. The pigments were also found to be appropriate candidates for the coloration of polymer substrates like PMMA.

Findings

The present investigations establish that various color hues can be achieved by the incorporation of suitable chromophore metal ions like calcium in various rare earth host lattice by tuning of the band gaps. The coloring mechanism is based on the strong absorption of the pigments in the blue and red regions due to electronic transitions of the micro states of rare earth ion. The pigment composition shows various hues ranges from green to yellow. The coloring mechanism is based on the tuning of band gap by the dopant like calcium in various rare earth host lattice. In addition, this pigment was chemically and thermally stable. Finally, it has applied in plastics like PMMA.

Research limitations/implications

Mechanism of the color appearance using band calculations and on possible applications of rare earth phosphate powders as pigments in plastics and paints have not been explored much. However, the properties of the Ca-doped rare earth phosphate implies that this material has a potential to be applied as a satisfactory pigment for coating or coloring except for glaze, which may cause a side reaction at high temperatures, especially taking into consideration the economics and ecologies. The possibility of Ca2+ incorporation in CePO4 with monazite structure-type has been established.

Practical implications

The designed pigments consist of non-toxic elements and were further found to possess high thermal and chemical stability. The pigments were also found to be appropriate candidates for the coloration of polymer substrates. Thus, the present environmental friendly pigment powders may find potential alternative to the classical toxic inorganic pigments for various applications.

Social implications

There is a strong incentive to design new colorants based on inorganic materials to substitute for industrial pigments that are based on heavy elements hazardous to health and the environment. However, several industrial yellow pigments such as cadmium yellow (CdS), chrome yellow (PbCrO4) and nickel titanium yellow (TiO2-NiO-Sb2O3) contain the harmful elements (e.g. Cd, Pb, Cr and Sb) for the human body as well as the environment. The designed pigments consist of non-toxic elements and were further found to possess high thermal and chemical stability. The pigments were also found to be appropriate candidates for the coloration of polymer substrates. Thus, the present environmental friendly pigment powders may find potential alternative to the classical toxic inorganic pigments for various applications.

Originality/value

There is a strong incentive to design new colorants based on inorganic materials to substitute for industrial pigments that are based on heavy elements hazardous to health and the environment. However, several industrial yellow pigments such as cadmium yellow (CdS), chrome yellow (PbCrO4) and nickel titanium yellow (TiO2-NiO-Sb2O3) contain the harmful elements (e.g. Cd, Pb, Cr and Sb) for the human body as well as the environment. So, the authors have developed new class of inorganic pigments that are both non-toxic and environmentally unimpeachable, while preserving or even exceeding the optical, thermal and chemical characteristics of the existing commercial pigments. The developed colorants find practical applications in polymer matrix like PMMA.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 January 2007

Arthur Bens, Hermann Seitz, Günter Bermes, Moritz Emons, Andreas Pansky, Barbara Roitzheim, Edda Tobiasch and Carsten Tille

To describe the development of a novel polyether(meth)acrylate‐based resin material class for stereolithography with alterable material characteristics.

2617

Abstract

Purpose

To describe the development of a novel polyether(meth)acrylate‐based resin material class for stereolithography with alterable material characteristics.

Design/methodology/approach

A complete overview of details to composition parameters, the optimization and bandwidth of mechanical and processing parameters is given. Initial biological characterization experiments and future application fields are depicted. Process parameters are studied in a commercial 3D systems Viper stereolithography system, and a new method to determine these parameters is described herein.

Findings

Initial biological characterizations show the non‐toxic behavior in a biological environment, caused mainly by the (meth)acrylate‐based core components. These photolithographic resins combine an adjustable low Young's modulus with the advantages of a non‐toxic (meth)acrylate‐based process material. In contrast to the mostly rigid process materials used today in the rapid prototyping industry, these polymeric formulations are able to fulfill the extended need for a soft engineering material. A short overview of sample applications is given.

Practical implications

These polymeric formulations are able to meet the growing demand for a resin class for rapid manufacturing that covers a bandwidth from softer to stiffer materials.

Originality/value

This paper gives an overview about the novel developed material class for stereolithography and should be therefore of high interest to people with interest in novel rapid manufacturing materials and technology.

Details

Rapid Prototyping Journal, vol. 13 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2002

Otto Rohr

Bismuth is relatively little known in general; however, it has been known since the fifteenth century in Germany and was called by Paracelsus “Bismutum”. With very similar…

1691

Abstract

Bismuth is relatively little known in general; however, it has been known since the fifteenth century in Germany and was called by Paracelsus “Bismutum”. With very similar properties to lead, it could be called the “twin brother of lead”, but bismuth is considered non‐toxic and used in cosmetics and pharmaceuticals. It is really a unique metal, considered as a metal within the periodic table of elements, but has more similarity to semimetals than to metals. Bismuth replaces the formerly and widely used lead in EP‐greases and EP‐lubricants giving better properties to them, even using down to half of the metal concentration. Bismuth has very high synergism to sulphur, the oldest known element. So, the combination of the oldest known element sulphur with the newest “green and ecologically clean” metal Bismuth – is actually the modern and metallic extreme pressure technology – that follows the formerly used, during many decades, sulphur‐lead‐technology – but being non‐toxic.

Details

Industrial Lubrication and Tribology, vol. 54 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 December 2002

148

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 2004

S.M.A. Shibli and V. Anitha Kumary

There is an increasing demand for eco‐friendly inhibitors for use in cooling water systems. Both calcium gluconates and molybdate are eco‐friendly, non‐toxic chemicals…

Abstract

There is an increasing demand for eco‐friendly inhibitors for use in cooling water systems. Both calcium gluconates and molybdate are eco‐friendly, non‐toxic chemicals. The corrosion inhibition of calcium gluconate and sodium molybdate on carbon steel in neutral aqueous media was evaluated by means of weight loss, electrochemical polarisation and impedance techniques. A synergistic effect was observed when these two eco‐friendly non‐toxic inhibitors were used in protecting carbon steel. A non‐linear relationship existed between the concentrations of the two inhibitors showing a synergistic effect.

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1964

In this special feature details are given of those British paints which can be described as corrosion‐resistant primers, both one‐ and two‐pack. The materials are…

Abstract

In this special feature details are given of those British paints which can be described as corrosion‐resistant primers, both one‐ and two‐pack. The materials are generally classified according to the base or pigment which actively prevents corrosion—e.g. metallic zinc in zinc/epoxy formulations— or by the base which produces a barrier action against corrosion, e.g. bitumen in bituminous paints. Exceptions to this are the etching primers, which are separately classified. About 300 primers are described, the manufacturers' names and addresses being cross‐indexed and listed separately on page 48.

Details

Anti-Corrosion Methods and Materials, vol. 11 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 September 1976

A. Marchese, A. Papo and G. Torriano

Summary Chlorinated rubber primers formulated with active pigments, which are claimed to be non‐toxic and non‐polluting, are investigated; they are designed for the…

Abstract

Summary Chlorinated rubber primers formulated with active pigments, which are claimed to be non‐toxic and non‐polluting, are investigated; they are designed for the protection of ships (above the waterline), port installation, industrial plants, bridges, etc.

Details

Anti-Corrosion Methods and Materials, vol. 23 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 24 January 2022

Ahmet Akar, Berrin Değirmenci and Nesrin Köken

The purpose of this paper is the production of fire retardant and smoke suppressant rigid polyurethane foam (RPUF) with lower toxicity by using several fire-retardant combinations.

Abstract

Purpose

The purpose of this paper is the production of fire retardant and smoke suppressant rigid polyurethane foam (RPUF) with lower toxicity by using several fire-retardant combinations.

Design/methodology/approach

Fire-retardant additives with cooling effect, barrier ash formation effect, gas-phase inhibition effect and smoke suppressant effect combined to produce an optimum outcome on RPUF. The additive amount and burning time correlation were studied to find out the minimum amount of fire-retardant to obtain fire-retardant polyurethane foam.

Findings

Zinc borate powder was coated with 1.5 wt % of stearic acid and hydroxy stearic acid. Polyammonium diborates (PABs) were synthesized and used as a fire-retardant and smoke suppressant for rigid PU foam. Fire-retardant rigid polyurethane foams (FR-RPUF) composites formed by using several combinations of zinc borate, aluminum trihydroxide, trischloroisopropyl phosphate (TCPP), PABs, zinc borate coated with stearic acid and hydroxy stearic acid. Produced FR-RPUF were horizontal burning grade, and burning time was in the range of 1–10 s.

Research limitations/implications

There were limitations during the mixing of fire-retardant powders with polyol due to the high viscosity of the mixture.

Practical implications

FR-RPUF foam with lower toxicity can be produced industrially with these fire-retardant combinations.

Social implications

FR-RPUF could be produced by using non-toxic additives. During a fire, these additives do not evolve toxic gases. The TCPP content of RPUF foam was reduced, and fire-retardant PU with lower toxicity was produced.

Originality/value

Coated zinc borate and the combinations of the fire-retardants were successful in producing non-toxic fire-retardant and smoke suppressant PU foam.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 1000