Search results

1 – 7 of 7
Article
Publication date: 23 September 2024

Xiaotian Xia and Ju Han

The purpose of this study is to systematically analyze the wear of cylindrical needle bearings in rotary vector reducers under temperature rise and identify the influencing…

Abstract

Purpose

The purpose of this study is to systematically analyze the wear of cylindrical needle bearings in rotary vector reducers under temperature rise and identify the influencing factors.

Design/methodology/approach

Based on the dynamic characteristics of the RV-20E reducer, the time-varying contact force of the cylindrical needle bearing and the entrainment speed of the inner and outer raceways were calculated. A mixed elastohydrodynamic lubrication model of the needle bearing, considering friction and temperature rise, was established using a dynamic rough tooth surface model. The model solved for the oil film thickness, contact stress and wear conditions of the bearing raceway contact area. The effects of the number of rolling needles, the diameter of rolling needles and surface strength on the wear characteristics were analyzed.

Findings

The results of this study show that the oil film thickness, oil film pressure and surface scratches of cylindrical needle bearings exhibit an uneven, patchy distribution under the combined effects of friction and temperature rise. When the radius of the rolling needle is less than 1.44 mm, inner ring wear is less than outer ring wear. Conversely, when the radius exceeds 1.44 mm, inner ring wear is greater. The optimal rolling needle radius is 1.6 mm. Increasing the number of rolling needles and enhancing the yield strength of the contact surface significantly extend bearing life.

Originality/value

This study provides valuable recommendations for optimizing bearing structural parameters and material characteristics in the design of rotary vector reducers.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2024-0242/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2024

Mohammed Abdulaal and Mohammad Q. Abdulah

Crossed helical gears have point contact and their surfaces are subject to high surface stress. Contact stress and root tooth stress are the most common sources of failure in…

Abstract

Purpose

Crossed helical gears have point contact and their surfaces are subject to high surface stress. Contact stress and root tooth stress are the most common sources of failure in crossed helical gear. This paper aims to study the load-carrying capacity and performance of crossed helical gear teeth with different gear tooth profiles. To overcome defects and reduce the sensitivity to small shaft angle changes. The combined tooth profile is designed to reduce the bending stresses, contact stresses and tooth deflection, and prevent pinion failure in the gearbox.

Design/methodology/approach

The principle of the method is a line contact is introduced instead of a point contact between two teeth in mesh with each other. The tooth surface of the helical gear is designed and cut by a modified tool. Higher normal pressure angles like 25° and 35° are used. The modified involute is accomplished to eliminate interference between the teeth. Engineering software packages have been applied to generate all crossed helical gears gear profiles. The modification is compounding curves consisting of an epicycloid-involute-hypocycloid gear teeth profile generated by the cutter modified.

Findings

The stresses in the crossed helical gear teeth profile were reduced by increasing the normal pressure angle values. Using a 35° pressure angle the enhancement percentage in contact stress and teeth fillet region will be about 29.345% and 15.421%, respectively. The best enhancement in a gear’s resistance is the epicycloid-involute-hypocycloid gear teeth profile. The enhancement was 32.610% and 18.588%. The skew in line of action in skewed helical gear will be sensitive when the crossing angles are small. Their teeth surface tends to be easily worn out; however, the wearing process will be reduced by using a proposed gear teeth profile.

Practical implications

The gear teeth to be modified are cut by a shaper process. The modifying rack cutter of this study can be used as a reference for creating a different helical gears sample. The helical teeth surface is modified to become an envelope of the other. This makes an original point contact change into a line contact. The epicycloid-involute-hypocycloid gear teeth profile is preferred for a higher contact ratio and a large load capacity. This work explicitly introduces a new method of kinematic consideration to improve the load capacity of crossed helical gear.

Originality/value

This paper showed some novel results by the unique shape of the rack-cutter designed to generate different helical angles and different gear positions. In the future, it will make valuable contributions to the further development of the dynamic performance of a crossed helical gear system through the study in the field of using asymmetric teeth profiles of helical gears with tip relief as the manner to enhance the crossed helical gear performance. Investigation of crossed helical gear by applying a predesigned parabolic function of transmission error enables the absorption of linear discontinuous functions caused by misalignment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 September 2024

Shanshuai Niu, Junzheng Wang and Jiangbo Zhao

There are various uncertain and nonlinear problems in hydraulic legged robot systems, including parameter uncertainty, unmodeled dynamics and external disturbances. This study…

Abstract

Purpose

There are various uncertain and nonlinear problems in hydraulic legged robot systems, including parameter uncertainty, unmodeled dynamics and external disturbances. This study aims to eliminate uncertainties and improve the foot trajectory tracking control performance of hydraulic legged robots, a high-performance foot trajectory tracking control method based on fixed-time disturbance observers for hydraulic legged robots is proposed.

Design/methodology/approach

First, the robot leg mechanical system model and hydraulic system model of the hydraulic legged robot are established. Subsequently, two fixed-time disturbance observers are designed to address the unmatched lumped uncertainty and match lumped uncertainty in the system. Finally, the lumped uncertainties are compensated in the controller design, and the designed motion controller also achieves fixed-time stability.

Findings

Through simulation and experiments, it can be found that the proposed tracking control method based on fixed-time observers has better tracking control performance. The effectiveness and superiority of the proposed method have been verified.

Originality/value

Both the disturbance observers and the controller achieve fixed-time stability, effectively improving the performance of foot trajectory tracking control for hydraulic legged robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 August 2023

Samir Ouchene, Arezki Smaili and Hachimi Fellouah

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid…

Abstract

Purpose

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid dynamics data.

Design/methodology/approach

Two methods are implemented as function objects within the OpenFOAM framework for estimating the blade’s AoA and relative velocity. For the numerical analysis of the flow around and through the VAWT, 2 D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are carried out and validated against experimental data.

Findings

To gain a better understanding of the complex flow features encountered by VAWT blades, the determination of the AoA is crucial. Relying on the geometrically-derived AoA may lead to wrong conclusions about blade aerodynamics.

Practical implications

This study can lead to the development of more robust optimization techniques for enhancing the variable-pitch control mechanism of VAWT blades and improving low-order models based on the blade element momentum theory.

Originality/value

Assessment of the reliability of AoA and relative velocity estimation methods for VAWT’ blades at low-Reynolds numbers using URANS turbulence models in the context of dynamic stall and blade–vortex interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 July 2024

Ananthajit Ajaya Kumar and Ashwani Assam

Deep-learning techniques are recently gaining a lot of importance in the field of turbulence. This study focuses on addressing the problem of data imbalance to improve the…

Abstract

Purpose

Deep-learning techniques are recently gaining a lot of importance in the field of turbulence. This study focuses on addressing the problem of data imbalance to improve the performance of an existing deep learning neural network to infer the Reynolds-averaged Navier–Stokes solution, proposed by Thuerey et al. (2020), in the cases of airfoils with high wake formation behind them. The model is based on a U-Net architecture, which calculates pressure and velocity solutions for fluid flow around an airfoil.

Design/methodology/approach

In this work, we propose various methods for training the model on selectively generated data with different distributions, which would be representative of the under-performing test samples. The property we chose for selectively generating data was the fraction of negative x-velocity in the domain. We have used Grad-CAM to compare the layer activations of different models trained using the proposed methods.

Findings

We observed that using our methods, the average performance on the samples with high wake formation (i.e. flow over airfoils at high angle of attack) has improved. Using one of the proposed methods, an average performance improvement of 15.65% was observed for samples of unknown airfoils compared to a similar model trained using the original method.

Originality/value

This work demonstrates the use of imbalanced learning in the field of fluid mechanics. The performance of the model is improved by giving significance to the distribution of the training data without changes to the model architecture.

Details

Engineering Computations, vol. 41 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 7 of 7