Search results

1 – 10 of over 5000
Article
Publication date: 15 March 2021

Putta Hemalatha and Geetha Mary Amalanathan

Adequate resources for learning and training the data are an important constraint to develop an efficient classifier with outstanding performance. The data usually follows a…

Abstract

Purpose

Adequate resources for learning and training the data are an important constraint to develop an efficient classifier with outstanding performance. The data usually follows a biased distribution of classes that reflects an unequal distribution of classes within a dataset. This issue is known as the imbalance problem, which is one of the most common issues occurring in real-time applications. Learning of imbalanced datasets is a ubiquitous challenge in the field of data mining. Imbalanced data degrades the performance of the classifier by producing inaccurate results.

Design/methodology/approach

In the proposed work, a novel fuzzy-based Gaussian synthetic minority oversampling (FG-SMOTE) algorithm is proposed to process the imbalanced data. The mechanism of the Gaussian SMOTE technique is based on finding the nearest neighbour concept to balance the ratio between minority and majority class datasets. The ratio of the datasets belonging to the minority and majority class is balanced using a fuzzy-based Levenshtein distance measure technique.

Findings

The performance and the accuracy of the proposed algorithm is evaluated using the deep belief networks classifier and the results showed the efficiency of the fuzzy-based Gaussian SMOTE technique achieved an AUC: 93.7%. F1 Score Prediction: 94.2%, Geometric Mean Score: 93.6% predicted from confusion matrix.

Research limitations/implications

The proposed research still retains some of the challenges that need to be focused such as application FG-SMOTE to multiclass imbalanced dataset and to evaluate dataset imbalance problem in a distributed environment.

Originality/value

The proposed algorithm fundamentally solves the data imbalance issues and challenges involved in handling the imbalanced data. FG-SMOTE has aided in balancing minority and majority class datasets.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 February 2022

Yaotan Xie and Fei Xiang

This study aimed to adapt existing text-mining techniques and propose a novel topic recognition approach for textual patient reviews.

Abstract

Purpose

This study aimed to adapt existing text-mining techniques and propose a novel topic recognition approach for textual patient reviews.

Design/methodology/approach

The authors first transformed multilabel samples for adapting model training forms. Then, an improved method was proposed based on dynamic mixed sampling and transfer learning to improve the learning problem caused by imbalanced samples. Specifically, the training of our model was based on the framework of a convolutional neural network and self-trained Word2Vector on large-scale corpora.

Findings

Compared with the SVM and other CNN-based models, the CNN+ DMS + TL model proposed in this study has made significant improvement in F1 score.

Originality/value

The improved methods based on dynamic mixed sampling and transfer learning can adequately manage the learning problem caused by the skewed distribution of samples and achieve the effective and automatic topic recognition of textual patient reviews.

Peer review

The peer-review history for this article is available at: https://publons.com/publon/10.1108/OIR-01-2021-0059.

Details

Online Information Review, vol. 46 no. 6
Type: Research Article
ISSN: 1468-4527

Keywords

Book part
Publication date: 6 September 2019

Son Nguyen, Gao Niu, John Quinn, Alan Olinsky, Jonathan Ormsbee, Richard M. Smith and James Bishop

In recent years, the problem of classification with imbalanced data has been growing in popularity in the data-mining and machine-learning communities due to the emergence of an…

Abstract

In recent years, the problem of classification with imbalanced data has been growing in popularity in the data-mining and machine-learning communities due to the emergence of an abundance of imbalanced data in many fields. In this chapter, we compare the performance of six classification methods on an imbalanced dataset under the influence of four resampling techniques. These classification methods are the random forest, the support vector machine, logistic regression, k-nearest neighbor (KNN), the decision tree, and AdaBoost. Our study has shown that all of the classification methods have difficulty when working with the imbalanced data, with the KNN performing the worst, detecting only 27.4% of the minority class. However, with the help of resampling techniques, all of the classification methods experience improvement on overall performances. In particular, the Random Forest, in combination with the random over-sampling technique, performs the best, achieving 82.8% balanced accuracy (the average of the true-positive rate and true-negative rate).

We then propose a new procedure to resample the data. Our method is based on the idea of eliminating “easy” majority observations before under-sampling them. It has further improved the balanced accuracy of the Random Forest to 83.7%, making it the best approach for the imbalanced data.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78754-290-7

Keywords

Article
Publication date: 22 October 2018

Sihem Khemakhem, Fatma Ben Said and Younes Boujelbene

Credit scoring datasets are generally unbalanced. The number of repaid loans is higher than that of defaulted ones. Therefore, the classification of these data is biased toward…

1037

Abstract

Purpose

Credit scoring datasets are generally unbalanced. The number of repaid loans is higher than that of defaulted ones. Therefore, the classification of these data is biased toward the majority class, which practically means that it tends to attribute a mistaken “good borrower” status even to “very risky borrowers”. In addition to the use of statistics and machine learning classifiers, this paper aims to explore the relevance and performance of sampling models combined with statistical prediction and artificial intelligence techniques to predict and quantify the default probability based on real-world credit data.

Design/methodology/approach

A real database from a Tunisian commercial bank was used and unbalanced data issues were addressed by the random over-sampling (ROS) and synthetic minority over-sampling technique (SMOTE). Performance was evaluated in terms of the confusion matrix and the receiver operating characteristic curve.

Findings

The results indicated that the combination of intelligent and statistical techniques and re-sampling approaches are promising for the default rate management and provide accurate credit risk estimates.

Originality/value

This paper empirically investigates the effectiveness of ROS and SMOTE in combination with logistic regression, artificial neural networks and support vector machines. The authors address the role of sampling strategies in the Tunisian credit market and its impact on credit risk. These sampling strategies may help financial institutions to reduce the erroneous classification costs in comparison with the unbalanced original data and may serve as a means for improving the bank’s performance and competitiveness.

Details

Journal of Modelling in Management, vol. 13 no. 4
Type: Research Article
ISSN: 1746-5664

Keywords

Book part
Publication date: 1 September 2021

Son Nguyen, Phyllis Schumacher, Alan Olinsky and John Quinn

We study the performances of various predictive models including decision trees, random forests, neural networks, and linear discriminant analysis on an imbalanced data set of…

Abstract

We study the performances of various predictive models including decision trees, random forests, neural networks, and linear discriminant analysis on an imbalanced data set of home loan applications. During the process, we propose our undersampling algorithm to cope with the issues created by the imbalance of the data. Our technique is shown to work competitively against popular resampling techniques such as random oversampling, undersampling, synthetic minority oversampling technique (SMOTE), and random oversampling examples (ROSE). We also investigate the relation between the true positive rate, true negative rate, and the imbalance of the data.

Book part
Publication date: 26 October 2017

Son Nguyen, John Quinn and Alan Olinsky

We propose an oversampling technique to increase the true positive rate (sensitivity) in classifying imbalanced datasets (i.e., those with a value for the target variable that…

Abstract

We propose an oversampling technique to increase the true positive rate (sensitivity) in classifying imbalanced datasets (i.e., those with a value for the target variable that occurs with a small frequency) and hence boost the overall performance measurements such as balanced accuracy, G-mean and area under the receiver operating characteristic (ROC) curve, AUC. This oversampling method is based on the idea of applying the Synthetic Minority Oversampling Technique (SMOTE) on only a selective portion of the dataset instead of the entire dataset. We demonstrate the effectiveness of our oversampling method with four real and simulated datasets generated from three models.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78743-069-3

Keywords

Article
Publication date: 4 December 2018

Zhongyi Hu, Raymond Chiong, Ilung Pranata, Yukun Bao and Yuqing Lin

Malicious web domain identification is of significant importance to the security protection of internet users. With online credibility and performance data, the purpose of this…

Abstract

Purpose

Malicious web domain identification is of significant importance to the security protection of internet users. With online credibility and performance data, the purpose of this paper to investigate the use of machine learning techniques for malicious web domain identification by considering the class imbalance issue (i.e. there are more benign web domains than malicious ones).

Design/methodology/approach

The authors propose an integrated resampling approach to handle class imbalance by combining the synthetic minority oversampling technique (SMOTE) and particle swarm optimisation (PSO), a population-based meta-heuristic algorithm. The authors use the SMOTE for oversampling and PSO for undersampling.

Findings

By applying eight well-known machine learning classifiers, the proposed integrated resampling approach is comprehensively examined using several imbalanced web domain data sets with different imbalance ratios. Compared to five other well-known resampling approaches, experimental results confirm that the proposed approach is highly effective.

Practical implications

This study not only inspires the practical use of online credibility and performance data for identifying malicious web domains but also provides an effective resampling approach for handling the class imbalance issue in the area of malicious web domain identification.

Originality/value

Online credibility and performance data are applied to build malicious web domain identification models using machine learning techniques. An integrated resampling approach is proposed to address the class imbalance issue. The performance of the proposed approach is confirmed based on real-world data sets with different imbalance ratios.

Article
Publication date: 23 June 2022

Kerim Koc, Ömer Ekmekcioğlu and Asli Pelin Gurgun

Central to the entire discipline of construction safety management is the concept of construction accidents. Although distinctive progress has been made in safety management…

Abstract

Purpose

Central to the entire discipline of construction safety management is the concept of construction accidents. Although distinctive progress has been made in safety management applications over the last decades, construction industry still accounts for a considerable percentage of all workplace fatalities across the world. This study aims to predict occupational accident outcomes based on national data using machine learning (ML) methods coupled with several resampling strategies.

Design/methodology/approach

Occupational accident dataset recorded in Turkey was collected. To deal with the class imbalance issue between the number of nonfatal and fatal accidents, the dataset was pre-processed with random under-sampling (RUS), random over-sampling (ROS) and synthetic minority over-sampling technique (SMOTE). In addition, random forest (RF), Naïve Bayes (NB), K-Nearest neighbor (KNN) and artificial neural networks (ANNs) were employed as ML methods to predict accident outcomes.

Findings

The results highlighted that the RF outperformed other methods when the dataset was preprocessed with RUS. The permutation importance results obtained through the RF exhibited that the number of past accidents in the company, worker's age, material used, number of workers in the company, accident year, and time of the accident were the most significant attributes.

Practical implications

The proposed framework can be used in construction sites on a monthly-basis to detect workers who have a high probability to experience fatal accidents, which can be a valuable decision-making input for safety professionals to reduce the number of fatal accidents.

Social implications

Practitioners and occupational health and safety (OHS) departments of construction firms can focus on the most important attributes identified by analysis results to enhance the workers' quality of life and well-being.

Originality/value

The literature on accident outcome predictions is limited in terms of dealing with imbalanced dataset through integrated resampling techniques and ML methods in the construction safety domain. A novel utilization plan was proposed and enhanced by the analysis results.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 August 2022

Anjali More and Dipti Rana

Referred data set produces reliable information about the network flows and common attacks meeting with real-world criteria. Accordingly, this study aims to focus on the use of…

Abstract

Purpose

Referred data set produces reliable information about the network flows and common attacks meeting with real-world criteria. Accordingly, this study aims to focus on the use of imbalanced intrusion detection benchmark knowledge discovery in database (KDD) data set. KDD data set is most preferably used by many researchers for experimentation and analysis. The proposed algorithm improvised random forest classification with error tuning factors (IRFCETF) deals with experimentation on KDD data set and evaluates the performance of a complete set of network traffic features through IRFCETF.

Design/methodology/approach

In the current era of applications, the attention of researchers is immersed by a diverse number of existing time applications that deals with imbalanced data classification (ImDC). Real-time application areas, artificial intelligence (AI), Industrial Internet of Things (IIoT), etc. are dealing ImDC undergo with diverted classification performance due to skewed data distribution (SkDD). There are numerous application areas that deal with SkDD. Many of the data applications in AI and IIoT face the diverted data classification rate in SkDD. In recent advancements, there is an exponential expansion in the volume of computer network data and related application developments. Intrusion detection is one of the demanding applications of ImDC. The proposed study focusses on imbalanced intrusion benchmark data set, KDD data set and other benchmark data set with the proposed IRFCETF approach. IRFCETF justifies the enriched classification performance on imbalanced data set over the existing approach. The purpose of this work is to review imbalanced data applications in numerous application areas including AI and IIoT and tuning the performance with respect to principal component analysis. This study also focusses on the out-of-bag error performance-tuning factor.

Findings

Experimental results on KDD data set shows that proposed algorithm gives enriched performance. For referred intrusion detection data set, IRFCETF classification accuracy is 99.57% and error rate is 0.43%.

Research limitations/implications

This research work extended for further improvements in classification techniques with multiple correspondence analysis (MCA); hierarchical MCA can be focussed with the use of classification models for wide range of skewed data sets.

Practical implications

The metrics enhancement is measurable and helpful in dealing with intrusion detection systems–related imbalanced applications in current application domains such as security, AI and IIoT digitization. Analytical results show improvised metrics of the proposed approach than other traditional machine learning algorithms. Thus, error-tuning parameter creates a measurable impact on classification accuracy is justified with the proposed IRFCETF.

Social implications

Proposed algorithm is useful in numerous IIoT applications such as health care, machinery automation etc.

Originality/value

This research work addressed classification metric enhancement approach IRFCETF. The proposed method yields a test set categorization for each case with error reduction mechanism.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 30 July 2020

Alaa Tharwat

Classification techniques have been applied to many applications in various fields of sciences. There are several ways of evaluating classification algorithms. The analysis of…

32202

Abstract

Classification techniques have been applied to many applications in various fields of sciences. There are several ways of evaluating classification algorithms. The analysis of such metrics and its significance must be interpreted correctly for evaluating different learning algorithms. Most of these measures are scalar metrics and some of them are graphical methods. This paper introduces a detailed overview of the classification assessment measures with the aim of providing the basics of these measures and to show how it works to serve as a comprehensive source for researchers who are interested in this field. This overview starts by highlighting the definition of the confusion matrix in binary and multi-class classification problems. Many classification measures are also explained in details, and the influence of balanced and imbalanced data on each metric is presented. An illustrative example is introduced to show (1) how to calculate these measures in binary and multi-class classification problems, and (2) the robustness of some measures against balanced and imbalanced data. Moreover, some graphical measures such as Receiver operating characteristics (ROC), Precision-Recall, and Detection error trade-off (DET) curves are presented with details. Additionally, in a step-by-step approach, different numerical examples are demonstrated to explain the preprocessing steps of plotting ROC, PR, and DET curves.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of over 5000