Search results

1 – 8 of 8
Article
Publication date: 5 September 2016

Meinhard Schwaiger and David Wills

This paper aims to provide the international aeronautical community with details of the development of a new disruptive technology for aircraft propulsion.

573

Abstract

Purpose

This paper aims to provide the international aeronautical community with details of the development of a new disruptive technology for aircraft propulsion.

Design/methodology/approach

This paper describes the results achieved by a small Austrian aeronautical innovations company in developing a cyclogyro propulsion system capable of vertical launch and efficient forward flight. The research team progressed from concept definition and simulation (2004-2006), through experimental validation and concept demonstration (2006), component optimization (2006-2012), full system demonstration (2012-2014) and examination of ability to scale (both larger and smaller) (2015 onwards). This paper provides details of the results of each of these stages.

Findings

The research team proved that cyclogyro propulsion can be used for the vertical launch, and that, in forward flight, it has the potential to achieve efficiency beyond the range of conventional fixed wing and rotorcraft.

Research limitations/implications

This research indicates that the efficiency increases with forward speed within the range achieved in standard wind tunnels (up to 35 m/s). This efficiency appears to be caused by a unique chamber effect within the cyclogyro rotor assembly. Future research should be conducted to analyse this chamber effect in greater detail and to test the cyclogyro rotor for speeds beyond 35 m/s.

Practical implications

This work indicates that cyclogyro propulsion could have the potential to provide vertical launch, high speed and highly efficient aircraft that have reduced wing span, no external rotors and exceptional agility. This technology could therefore be feasible for vertical take-off and landing aircraft that can safely form densely packed swarms.

Social implications

It could be researched as an efficiency increase in forward flight completely different to existing propulsion systems. This could open a way for a more efficient air traffic in future and faster reduction of CO2 and NOX emission an allow an environment-friendlier air travelling.

Originality/value

This paper provides the details of the first cyclogyro aircraft to have flown and will serve the aeronautical community by stimulating the debate on this new disruptive technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2016

Louis Gagnon, Marco Morandini, Giuseppe Quaranta, Vincenzo Muscarello and Pierangelo Masarati

Few modeling approaches exist for cycloidal rotors because they are a prototypal technology. Thus, the purpose of this study was to develop new models for their analysis and…

Abstract

Purpose

Few modeling approaches exist for cycloidal rotors because they are a prototypal technology. Thus, the purpose of this study was to develop new models for their analysis and validation. These models were used to analyze cycloidal rotors and a helicopter that uses them instead of a tail rotor.

Design/methodology/approach

Three different models were developed to study the aerodynamic response of cycloidal rotors. They are a simplified analytical model resolved algebraically; a multibody model resolved numerically; and an unsteady computational fluid dynamics (CFD) model. The models were validated using data coming from three different experimental sources, each with rotor spans and radii of roughly 1 m. The CFD model was used to investigate the influence of rotor arms. The efficiency and the stability of the rotor in different configurations were studied. An aeroelastic multibody simulation was used to verify the influence of flexibility on the rotor response.

Findings

The analyses suggested that cycloidal rotors can increase the efficiency of a helicopter at high velocities while flexibility reduces it and may lead to instabilities.

Research limitations/implications

These models do not consider the effect of boundary layer friction on the trailing vortices generated by the rotor blades.

Practical implications

These models allow a four-step aerodynamic optimization procedure. First, a range of optimized configurations is obtained by the analytical model. Second, the multibody model refines that range. Third, the CFD model detects eventual problematic blade interactions.

Originality/value

The models presented should serve researchers and industrials looking for a means to measure the performance of cycloidal rotors concepts. The results presented also guide an initial cycloidal rotor design.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2016

Jakson Augusto Leger Monteiro, José C. Páscoa and Carlos M. Xisto

Cycloidal rotors, also known as cyclogyros, are horizontal axis rotary-wing machines with potential for Vertical Take-Off and Landing aircraft applications. The paper aims to…

Abstract

Purpose

Cycloidal rotors, also known as cyclogyros, are horizontal axis rotary-wing machines with potential for Vertical Take-Off and Landing aircraft applications. The paper aims to devise and validate a new semi-empirical analytical model that is capable of assisting in the structural and aerodynamic design of cyclogyros.

Design/methodology/approach

The analytical model comprises a purely analytical kinematic sub-component that is used for analyzing the structural feasibility of the rotor. Several geometrical parameters are assessed, e.g. the oscillation schedule of the blades as a function of the properties of the pitching mechanical system. The dynamic sub-component of the model is used for estimating the rotor thrust production and power consumption. This sub-component is semi-empirical and uses a calibration function that was devised using the available experimental data.

Findings

For a set of initial conditions and geometrical parameters, the model is capable of providing a real animation of the cyclogyro operation. It is shown that the motion of the blades does not comply with the requirements of a perfect cycloidal curve. The study concerning the simulation of the virtual camber effect on the drum blades, with and without the pitch effect, shows that the virtual camber strongly depends on the chord-to-radius ratio and on the aircraft advance velocity.

Originality/value

A new analytical model capable of assisting in the geometrical and aerodynamic design of cyclogyros is here proposed. The model is capable of providing approximate estimations of the cyclogyro thrust production and power consumption under operating design conditions.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Yu Hu, Hailang Zhang and Gengqi Wang

This paper aims to investigate the mechanisms lying behind the cycloidal rotor under hovering status.

Abstract

Purpose

This paper aims to investigate the mechanisms lying behind the cycloidal rotor under hovering status.

Design/methodology/approach

Experiments were conducted to validate the numerical simulation results. The simulations were based on unsteady Reynolds-averaged Navier–Stokes (URANS) equations solver and the sliding mesh technique was used to model the blade motion. 2D and 2.5D simulations were made to investigate the 3D effects of turbulence. The effects of pressure and viscosity were compared to study the significance of the blade motion on force generation.

Findings

The 2.5D numerical simulation cannot produce more accurate results than the 2D counterpart. The pitching motion of the blade results in dynamic stall. The dynamic stall vortices induce parallel blade vortex interaction (BVI) upon downstream blades. The interactions between the blades delay the stall of the blade which is beneficial to the thrust generation. The blade pitching motion is the dominant contributor to the force generation and the turbulence is the secondary. Strong downwash in the rotor cage varied the inflow velocity as well as the effective angle of attack (AOA) of the blade.

Practical implications

Cycloidal rotor is a propulsion device that can provide omni-directional vectored thrust with high efficiency and low noise. To understand the mechanisms lying behind the cycloidal rotor helps the authors to design efficient cycloidal rotors for aircraft.

Originality/value

The authors discovered that the blade pitching motion plays primary role in force generation. The effects of the dynamic stall and BVI were studied. The reason why cycloidal rotor can be more efficient was discussed.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 October 2018

Hailang Zhang, Yu Hu and Gengqi Wang

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Abstract

Purpose

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Design/methodology/approach

First, experiments were conducted to validate the numerical methodology. After that, three turbulent models were compared to select the most accurate one. Then, 2D numerical simulation was carried out on 11 aerofoils with different cambers, including five cambered aerofoils, one symmetrical aerofoil and five inverse cambered aerofoils. The inverse cambered aerofoils are symmetrical about the chord line to the corresponding cambered ones.

Findings

The cycloidal propeller with large cambered aerofoil gives the lowest hovering efficiency, but with symmetrical aerofoil or small inverse cambered aerofoil shows the highest. Also, blades with large cambered aerofoil display high performance at the upper part of its trajectory, while with symmetrical aerofoil or the inverse cambered aerofoil have their best at the lower part. In addition, intensified downwash can be observed in the rotor cage for all cases. When a blade runs through the top-left part of its circle path, all cases display the feature of deep dynamic stall. When the blade travels through the nadir of its path, the actual angle of attack is close to zero due to the strong downwash. Furthermore, there exits intensified blade-vortex interaction induced by the preceding blade for large cambered aerofoils at the lower-right part of its trajectory.

Practical implications

This paper develops a new cycloidal propeller which is more efficient than the one already present.

Originality/value

This paper discovers that the aerofoil camber is a vital design parameter in the performance of cycloidal propeller, and the authors expect that the rotor with deformable aerofoil on camber would achieve much higher efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 1951

J. Solvey

This paper suggests a means of estimating wing weight using formulae based on the theoretical ideal wing. The predicted wing weight is attained by multiplying the weight of the…

Abstract

This paper suggests a means of estimating wing weight using formulae based on the theoretical ideal wing. The predicted wing weight is attained by multiplying the weight of the ideal wing by a correction factor derived from a statistical analysis of actual wing weights. The method has the advantage that it provides the designer with a yardstick by which to compare alternative designs and indicates where improvement might be effected.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 May 1947

C.F. Toms

THIS paper presents a summary of the method and results of a general investigation into the performance characteristics of ‘single’ autogyro and helicopter rotors, which was a…

Abstract

THIS paper presents a summary of the method and results of a general investigation into the performance characteristics of ‘single’ autogyro and helicopter rotors, which was a preliminary to the establishment, by the firm the author serves, of a helicopter division.

Details

Aircraft Engineering and Aerospace Technology, vol. 19 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 5 September 2016

Andrea Andrisani, Diego Angeli and Antonio Dumas

The purpose of this paper is to define an optimal pitching profile for the blades of a cycloidal rotor which minimizes the mean power consumption for a given mean thrust of the…

Abstract

Purpose

The purpose of this paper is to define an optimal pitching profile for the blades of a cycloidal rotor which minimizes the mean power consumption for a given mean thrust of the rotor.

Design/methodology/approach

A simple analytical model of the kinematics and aerodynamics of a cycloidal rotor is defined first to obtain expressions for thrust and power depending on the pitching profile and geometrical parameters of the rotor. Then, Lagrange optimization is applied to obtain the optimal pitching schedule under hovering conditions. Finally, results of the theoretical analysis are compared with those of a two-dimensional computational fluid dynamics (CFD) model.

Findings

Results of the optimization suggest that the optimal profile is a combination of sinusoidal functions. It is shown that the adoption of the optimal pitching schedule could improve the power efficiency of the rotor by approximately 25 per cent.

Practical implications

The possibility to increase the efficiency of a cycloidal rotor by acting on its pitching schedule could be a significant factor of success for this alternative propulsion concept.

Originality/value

The present work represents the first attempt at a definition of an optimal pitching profile for a cycloidal rotor. Moreover, although being carried out on the basis of simplified analytical considerations, the present investigation sets a methodological framework which could be successfully applied to the design of similar kinds of systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 8 of 8