Search results

1 – 7 of 7
Article
Publication date: 2 August 2019

Yong Cao, Yang Lu, Yueri Cai, Shusheng Bi and Guang Pan

This paper aims to imitate a cownose ray to develop a fish robot with paired flexible multi-fin-ray oscillating pectoral fins (OPFs) and control it to accomplish vivid stable 3-D…

Abstract

Purpose

This paper aims to imitate a cownose ray to develop a fish robot with paired flexible multi-fin-ray oscillating pectoral fins (OPFs) and control it to accomplish vivid stable 3-D motions using central pattern generators (CPGs) and fuzzy algorithm.

Design/methodology/approach

The cownose ray’s asymmetric sine-like oscillations were analyzed. Then a cownose-ray-like fish robot named Robo-ray was developed, which has paired flexible multi-fin-ray OPFs to actively control the fin shape and two tail fins to control the depth. To solve the problem of coordinated control for multi-degree-of-freedom Robo-ray, CPGs were adopted. An improved phase oscillator as a CPG unit with controlled amplitude, phase lag, smooth frequency transition and asymmetric oscillation characteristic was established. Furthermore, the CPG-fuzzy algorithm was developed for vivid stable 3-D motions. The open-loop speed control, the closed-loop control of depth and yaw were established.

Findings

The kinematic comparisons indicate that Robo-ray imitates the cownose ray realistically. The experimental results of closed-loop are obtained that the depth error of Robo-ray is less than ±100 mm and the course error is less than ±3°. Furthermore, the comprehensive experiments demonstrate that Robo-ray has high mobility, stability and robustness.

Originality/value

This research makes the fish robot with OPF propulsion closer to practical applications in complex underwater environment, for instance, ocean explorations, water quality monitoring and stealth military reconnaissance. In addition, Robo-ray can be taken as a scientific tool for better understanding of the hydrodynamics of OPF batoid.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 August 2015

Yong Cao, Shusheng Bi, Yueri Cai and Yuliang Wang

– This paper aims to develop a robofish with oscillating pectoral fins, and control it to mimic the bionic prototype by central pattern generators (CPGs).

Abstract

Purpose

This paper aims to develop a robofish with oscillating pectoral fins, and control it to mimic the bionic prototype by central pattern generators (CPGs).

Design/methodology/approach

First, the oscillation characteristics of the cownose ray were analyzed quantitatively. Second, a robofish with multi-joint pectoral fins was developed according to the bionic morphology and kinematics. Third, the improved phase oscillator was established, which contains a spatial asymmetric coefficient and a temporal asymmetric coefficient. Moreover, the CPG network is created to mimic the cownose ray and accomplish three-dimensional (3D) motions. Finally, the experiments were done to test the authors ' works.

Findings

The results demonstrate that the CPGs is effective to control the robofish to imitate the cownose ray realistically. In addition, the robofish is able to accomplish 3D motions of high maneuverability, and change among different swimming modes quickly and smoothly.

Originality/value

The research provides the method to develop a robofish from both 3D morphology and kinematics. The motion analysis and CPG control make sure that the robofish has the features of high maneuverability and camouflage. It is useful for military underwater applications and underwater detections in narrow environments. Second, this work lays the foundation for the autonomous 3D control. Moreover, the robotic fish can be taken as a scientific tool for the fluid bionics research.

Details

Industrial Robot: An International Journal, vol. 42 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 May 2015

Hongwei Ma, Yueri Cai, Yuliang Wang, Shusheng Bi and Zhao Gong

The paper aims to develop a cownose ray-inspired robotic fish which can be propelled by oscillating and chordwise twisting pectoral fins.

Abstract

Purpose

The paper aims to develop a cownose ray-inspired robotic fish which can be propelled by oscillating and chordwise twisting pectoral fins.

Design/methodology/approach

The bionic pectoral fin which can simultaneously realize the combination of oscillating motion and chordwise twisting motion is designed based on analyzing the movement of cownose ray’s pectoral fins. The structural design and control system construction of the robotic fish are presented. Finally, a series of swimming experiments are carried out to verify the effectiveness of the design for the bionic pectoral fin.

Findings

The experimental results show that the deformation of the bionic pectoral fin can be well close to that of the cownose ray’s. The bionic pectoral fin can produce effective angle of attack, and the thrust generated can propel robotic fish effectively. Furthermore, the tests of swimming performance in the water tank show that the robotic fish can achieve a maximum forward speed of 0.43 m/s (0.94 times of body length per second) and an excellent turning maneuverability with a small radius.

Originality/value

The oscillating and pitching motion can be obtained simultaneously by the active control of chordwise twisting motion of the bionic pectoral fin, which can better imitate the movement of cownose ray’s pectoral fin. The designed bionic pectoral fin can provide an experimental platform for further study of the effect of the spanwise and chordwise flexibility on propulsion performance.

Details

Industrial Robot: An International Journal, vol. 42 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 August 2020

Hongwei Ma, Shuai Ren, Junxiang Wang, Hui Ren, Yang Liu and Shusheng Bi

This paper aims to carry out the research on the influence of ground effect on the performance of robotic fish propelled by oscillating paired pectoral fins.

Abstract

Purpose

This paper aims to carry out the research on the influence of ground effect on the performance of robotic fish propelled by oscillating paired pectoral fins.

Design/methodology/approach

The two-dimensional ground effect model of the oscillating pectoral fin without considering flexible deformation is established by introducing a two-dimensional fluid ground effect model. The parameters of the influence of ground effect on the oscillating pectoral fin are analyzed. Finally, the ground effect test platform is built, and a series of hydrodynamic experiments are carried out to study the influence of ground effect on the propulsion performance of the robotic fish propelled by oscillating paired pectoral fins under different motion parameters.

Findings

The thickness of the trailing edge and effective clearance are two important parameters that can change the influence of ground effect on the rigid pectoral fin. The experimental results are consistent with that obtained through theoretical analysis within a certain extent, which indicates that the developed two-dimensional ground effect model in this paper can be used to analyze the influence of ground effect on the propulsion performance of the oscillating pectoral fin. The experiment results show that the average thrust increases with the decreasing distance between the robot fish and the bottom. Meanwhile, with the increase of oscillation frequency and amplitude, the average thrust increases gradually.

Originality/value

The developed two-dimensional ground effect model provides the theoretical basis for the further research on the influence of ground effect on the propulsion performance of the oscillating pectoral fin. It can also be used in the design of the bionic pectoral fins.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Mary Robinson

Abstract

Details

Reference Reviews, vol. 31 no. 6
Type: Research Article
ISSN: 0950-4125

Keywords

Article
Publication date: 12 August 2014

Shusheng Bi, Hongwei Ma, Yueri Cai, Chuanmeng Niu and Yuliang Wang

– The paper aims to present a dynamic model of flexible oscillating pectoral fin for further study on its propulsion mechanism.

Abstract

Purpose

The paper aims to present a dynamic model of flexible oscillating pectoral fin for further study on its propulsion mechanism.

Design/methodology/approach

The chordwise and spanwise motions of cow-nosed ray’s pectoral fin are first analyzed based on the mechanism of active/passive flexible deformation. The kinematic model of oscillating pectoral fin is established by introducing the flexible deformation. Then, the dynamic model of the oscillating pectoral fin is developed based on the quasi-steady blade element theory. A series of hydrodynamic experiments on the oscillating pectoral fin are carried out to investigate the influences of motion parameters on the propulsion performance of the oscillating pectoral fin.

Findings

The experimental results are consistent with that obtained through analytical calculation within a certain range, which indicates that the developed dynamic model in this paper is applicable to describe the dynamic characteristics of the oscillating pectoral fin approximately. The experimental results show that the average thrust of an oscillating pectoral fin increases with the increasing oscillating amplitude and frequency. However, the relationship between the average thrust and the oscillating frequency is nonlinear. Moreover, the experimental results show that there is an optimal phase difference at which the oscillating pectoral fin achieves the maximum average thrust.

Originality/value

The developed dynamic model provides the theoretical basis for further research on propulsion mechanism of oscillating pectoral fins. It can also be used in the design of the bionic pectoral fins.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 December 2017

Ou Xie, Boquan Li and Qin Yan

This paper aims to develop a novel type of bionic underwater robot (BUR) with multi-flexible caudal fins. With the coordinate movement of multi-caudal fins, BUR will combine the…

Abstract

Purpose

This paper aims to develop a novel type of bionic underwater robot (BUR) with multi-flexible caudal fins. With the coordinate movement of multi-caudal fins, BUR will combine the undulation propulsion mode of carangiform fish and jet propulsion mode of jellyfish together organically. The use of Computational Fluid Dynamics (CFD) and experimental method helps to reveal the effect of caudal fin stiffness and motion parameters on its hydrodynamic forces.

Design/methodology/approach

First, the prototype of BUR was given by mimicking the shape and propulsion mechanism of both carangiform fish and jellyfish. Besides, the kinematics models in both undulation and jet propulsion modes were established. Then, the effects of caudal fin stiffness on its hydrodynamic forces were investigated based on the CFD method. Finally, an experimental set-up was developed to test and verify the effects of the caudal fin stiffness on its hydrodynamic forces under different caudal fin actuation frequency and amplitude.

Findings

The results of this paper demonstrate that BUR with multi-flexible caudal fins combines the hydrodynamic characteristics of undulation and jet propulsion modes. In addition, the caudal fin with medium stiffness can generate larger thrust force and reduce the reactive power.

Practical implications

This paper implies that robotic fish can be equipped with both undulation and jet propulsion modes to optimize the swimming performance in the future.

Originality/value

This paper provides a BUR with multi-propulsion modes, which has the merits of high propulsion efficiency, high acceleration performance and overcome the head shaken problem effectively.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 7 of 7