Search results

1 – 10 of 19
Article
Publication date: 25 July 2024

Xuening Fei, Yuanyuan Li, Shuai Li, Lingyun Cao, Dajie Xing, Bingyang Cheng, Meitong Li and Hongbin Zhao

This study aims to realize the multipurpose use of inorganic materials in adsorption treatment of pigment wastewater and preparation of core-modified Color Index Pigment Red 57:1…

Abstract

Purpose

This study aims to realize the multipurpose use of inorganic materials in adsorption treatment of pigment wastewater and preparation of core-modified Color Index Pigment Red 57:1 (C.I. Pigment Red 57:1, PR 57:1).

Design/methodology/approach

In this paper, the inorganic materials (sepiolite and SiO2·nH2O) were used in both PR 57:1 production wastewater treatment and its core-modification. The inorganic material firstly adsorbed 3-hydroxy-2-naphthoic acid (bon acid) in the pigment wastewater to reduce chemical oxygen demand. Then, the inorganic material adsorbed with bon acid was reused to prepare core-modified PR 57:1.

Findings

In the pigment wastewater adsorption experiment, it was found that under pH = 3, the adsorption percentage of bon acid by inorganic material can reached up to 46.00%. The pigment characterization results showed that the core-modified PR 57:1 had a core-shell structure. Under UV light irradiation for 1 h, the core-modified PR 57:1 prepared with sepiolite and SiO2·nH2O showed total color difference ΔE value of 1.43 and 2.05, respectively, which was lower than that of unmodified PR 57:1 (ΔE = 2.89). In addition, the transmittance of pigment water suspension test results showed that the core-modified PR 57:1 showed better water dispersibility.

Originality/value

This paper attempts to develop a synergistic strategy based on the multipurpose use of inorganic materials in adsorption treatment of pigment wastewater and preparation of core-modified PR 57:1.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 September 2024

Khairunnahar Suchana and Md. Mamun Molla

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials…

Abstract

Purpose

The present numerical investigation examines the magnetohydrodynamic (MHD) double diffusion natural convection of power-law non-Newtonian nano-encapsulated phase change materials (NEPCMs) in a trapezoidal cavity.

Design/methodology/approach

The governing Navier-Stokes, energy and concentration equations based on the Cartesian curvilinear coordinates are solved using the collocated grid arrangement’s finite volume method. The in-house FORTRAN code is validated with the different benchmark problems. The NEPCM nanoparticles consist of a core-shell structure with Phase Change Material (PCM) at the core. The enclosure, shaped as a trapezoidal hollow, features a warmed (Th) left wall and a cold (Tc) right wall. Various parameters are considered, including the power law index (0.6 ≤ n ≤ 1.4), Hartmann number (0 ≤ Ha ≤ 30), Rayleigh number (104Ra ≤ 105) and fixed variables such as buoyancy ratio (Br = 0.8), Prandtl number (Pr = 6.2), Lewis number (Le = 5), fusion temperature (Θf = 0.5) and volume fraction (ϕ = 0.04).

Findings

The findings indicate a decrease in local Nusselt (Nu) and Sherwood (Sh) numbers with increasing Hartmann numbers (Ha). Additionally, for a shear-thinning fluid (n = 0.6) results in the maximum local Nu and Sh values. As the Rayleigh number (Ra) increases from 104 to 105, the structured vortex in the streamline pattern is disturbed. Furthermore, for different Ra values, an increase in n from 0.6 to 1.4 leads to a 67.43% to 76.88% decrease in average Nu and a 70% to 77% decrease in average Sh.

Research limitations/implications

This research is for two-dimensioal laminar flow only.

Practical implications

PCMs represent a class of practical substances that behave as a function of temperature and have the innate ability to absorb, release and store heated energy in the form of hidden fusion enthalpy, or heat. They are valuable in these systems as they can store significant energy at a relatively constant temperature through their latent heat phase change.

Originality/value

As per the literature review and the authors’ understanding, an examination has never been conducted on MHD double diffusion natural convection of power-law non-Newtonian NEPCMs within a trapezoidal enclosure. The current work is innovative since it combines NEPCMs with the effect of magnetic field Double diffusion Natural Convection of power-law non-Newtonian NEPCMs in a Trapezoidal enclosure. This outcome can be used to improve thermal management in energy storage systems, increasing safety and effectiveness.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2024

Kuo Yang, Yanqiu Xia, Wenhao Chen and Yi Zhang

The purpose of this study was to synthesize composite nanoparticles (TiO2@SiO2) via the chemical deposition method and investigate their efficacy as additives in…

Abstract

Purpose

The purpose of this study was to synthesize composite nanoparticles (TiO2@SiO2) via the chemical deposition method and investigate their efficacy as additives in polytetrafluoroethylene (PTFE) lubricating grease. The focus was on examining the frictional and conductive properties of the TiO2@SiO2 grease using a friction tester.

Design/methodology/approach

Composite nanoparticles (TiO2@SiO2) were synthesized using the chemical deposition method and incorporated into PTFE grease. Frictional and conductive properties were evaluated using a friction tester. Surface morphology and chemical composition of wear tracks were analyzed using scanning electron microscope and X-ray photoelectron spectroscopy, respectively.

Findings

Incorporating TiO2@SiO2 at a mass fraction of 1 Wt.% led to a significant reduction in friction coefficient and wear width. The wear depth exhibited a remarkable decrease of 260%, while the contact resistance reached its peak value. This improvement in tribological properties could be attributed to the presence of TiO2@SiO2, where TiO2 served as the core and SiO2 as the shell during the friction process. The high hardness of the SiO2 shell contributed to enhanced load-bearing capacity. In addition, the exceptional insulation properties of SiO2 demonstrated excellent electron-capturing capabilities, resulting in improved friction and insulation performance of the TiO2@SiO2 lubricating grease.

Originality/value

This study demonstrates the potential of TiO2@SiO2 composite nanoparticles as additives in lubricating greases, offering improved friction and insulation performance. The findings provide insights into the design of advanced lubricating materials with enhanced tribological properties and insulation capacity, contributing to the development of more efficient and durable lubrication systems.

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 July 2024

Zhichuang Qi, Jingshan Chen, Zhangmi Huang, Chunyan Hu and Baojiang Liu

This paper aims to prepare Poly(Styrene-Butyl acrylate-Methacrylic acid) @Poly Gallic acid-Fe3+ photonic crystal composite inks [P(St-BA-MAA)@PGA-Fe3+ PCCI, @ means the PGA-Fe3+

Abstract

Purpose

This paper aims to prepare Poly(Styrene-Butyl acrylate-Methacrylic acid) @Poly Gallic acid-Fe3+ photonic crystal composite inks [P(St-BA-MAA)@PGA-Fe3+ PCCI, @ means the PGA-Fe3+ is loaded on the microspheres] and construct noniridescent structural colors on fabric substrates, with the goal of improving the visibility of structural colors.

Design/methodology/approach

P(St-BA-MAA)@PGA-Fe3+ PCCI were prepared by coating P(St-BA-MAA) microspheres with a metal-polyphenol network formed by gallic acid (GA, C7H6O5) and Fe3+. The assembly effects of the inks were explored under different conditions, including pH, temperature, concentration and surface tension. The optimal self-assembly conditions of the inks were determined using the controlled variable method.

Findings

The results demonstrated the successful preparation of P(St-BA-MAA)@PGA-Fe3+ PCCI. The metal polyphenol network film composed of GA and Fe3+ was successfully coated on the surface of P(St-BA-MAA) seed microspheres. The assembly mechanism of the inks was investigated, indicating that at a diethylene glycol (DEG, C4H10O3) concentration of 0.3 wt% and pH of 7, bright noniridescent structural colors could be formed on fabric surfaces after self-assembly by PCCI at 60 °C for 10 min. Furthermore, the mechanical fastness of the structural colors was enhanced due to the adherence of the soft shell composed of P(St-BA-MAA) and GA.

Originality/value

Utilizing a cost-effective approach and a diverse array of readily available raw materials, we have successfully prepared P(St-BA-MAA)@PGA-Fe3+ PCCI, which boasts superior performance and offers fabrics a range of unique coloring styles. This innovation paves the way for potential applications of structural colors in practical production, thereby broadening their realm of utility.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 August 2024

Nacira Mecheri, Leila Lefrada, Messaoud Benounis, Chedia Ben Hassine, Houcine Berhoumi and Chama Mabrouk

Ascorbic acid, a water-soluble antioxidant, is an essential component of the human diet and is known for its potent antioxidant properties against several diseases. In recent…

Abstract

Purpose

Ascorbic acid, a water-soluble antioxidant, is an essential component of the human diet and is known for its potent antioxidant properties against several diseases. In recent years, there has been increasing interest in the development of nonenzymatic sensors due to their simplicity, efficiency and excellent selectivity. The aim of this study is to present a selective and sensitive method for the detection of ascorbic acid in aqueous system using a new electrochemical non-enzymatic sensor based on a gold nanoparticles Au-NPs-1,3-di(4-bromophényl)-5-tert-butyl-1,3,5-triazinane (DBTTA) composite.

Design/methodology/approach

Using the square wave voltammetry (SWV) technique, a series of Au-NPs-DBTTA composites were successfully developed and investigated. First, DBTTA was synthesized via the condensation of tert-butylamine and a4-bromoaniline. The structure obtained was identified by IR, 1H NMR and 13C NMR analysis. A glassy carbon electrode (GCE) was modified with 10–1 M DBTTA dissolved in an aqueous solution by cyclic voltammetry in the potential range of 1–1.4 V. Au-NPs were then deposited on the DBTTA/GCE by a chronoamperometric technique. SWV was used to study the electrochemical behavior of the modified electrode (DBTTA/Au-NPs/GCEs). To observe the effect of nanoparticles, ascorbic acid in a buffer solution was analyzed by SWV at the modified electrode with and without gold nanoparticles (Au-NPs).

Findings

The DBTTA/Au-NPs/GCE showed better electroanalytical results. The detection limit of 10–5 M was obtained and the electrode was proportional to the logarithm of the AA concentration in the range of 5 × 10−3 M to 1 × 10−1 with very good correlation parameters.

Originality/value

It was also found that the elaborated sensor exhibited reproducibility and excellent selectivity against interfering molecules such as uric acid, aspartic acid and glucose. The proposed sensor was tested for the recognition of AA in orange, and satisfactory results were obtained.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 July 2024

Eunhye Son

Natural food colors used in food are generally perceived as additives. Therefore, many studies have been conducted to prove the health benefits and risks of using natural food…

Abstract

Purpose

Natural food colors used in food are generally perceived as additives. Therefore, many studies have been conducted to prove the health benefits and risks of using natural food colors, which play an important role in the food industry, and to identify realistic stabilization methods. This paper aims to examine the health effects of natural food colors from a pharmacological approach.

Design/methodology/approach

The paper searches for relevant literature using keywords such as “natural food coloring”, “stabilization” and “antioxidant effects”. For the case study area, this paper added “food science and technology” to identify methods for stabilizing natural food coloring. From this review, the authors ultimately selected 79 articles that appeared to meet the research objectives.

Findings

When using natural food coloring in food, there are concerns about stabilization. However, with the development of food science and technology, the authors have found that there are multi-layer emulsification methods that can be applied before, during and after food manufacturing, and storage standards are also important. Natural food coloring is playing a diverse role in food science.

Originality/value

Natural food coloring has been reported in various types of literature to have antioxidant, anti-inflammatory and antitumor effects. The most common pigments are carotenoids. Considering the positive effects of natural food coloring on human health, the authors suggest future directions for the development of food science and technology and provide a perspective for changing consumer perceptions.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 February 2023

Mehmet Ozdemir, Serap Mert and Ayse Aytac

This study aims to perform the surface treatment of synthetic α-Fe2O3 red iron oxide pigment with hydrolysate 3-aminopropyl silane (A) and colloidal silica (CS) and investigate…

Abstract

Purpose

This study aims to perform the surface treatment of synthetic α-Fe2O3 red iron oxide pigment with hydrolysate 3-aminopropyl silane (A) and colloidal silica (CS) and investigate the effects of surface-treated pigment on the styrene acrylic (SA) emulsion and polyurethane (PU) dispersion.

Design/methodology/approach

For this purpose, firstly red iron oxide particles were modified with A and CS separately in an aqueous medium. After isolation of the modified iron oxide were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Moreover, the degree of the dispersion stability of the modified pigment in coatings with SA emulsion and PU dispersion was investigated by using an oscillation rheometer. Loss (G''), storage (G') modulus, loss factor [tan(δ)] and yield stress (τ0) values were determined by performing amplitude and frequency sweep tests.

Findings

The τ0 in SA coatings decreases with the amount of used A and increases with the amount of used CS. The τ0 decreases as the amount of used A and CS in PU coatings increases. The use of CS on red iron oxide pigments causes storage modulus to increase in SA coatings at low angular frequencies, while it causes a decrease in PU coatings.

Originality/value

To the best of the authors’ knowledge, for the first time, the suspended state of the iron oxide hybrid pigment formed with CS in the coating was investigated rheologically in this study.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 September 2024

Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…

Abstract

Purpose

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.

Design/methodology/approach

This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.

Findings

An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.

Research limitations/implications

This review focuses primarily on the SLS AM process.

Originality/value

A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2024

Aixin Zhang, Wenli Deng, Qiuyang Li, Zilong Song and Guizhen Ke

This paper aims to demonstrate that, in line with the emerging trend of multifunctional yarn development, cotton yarn can effectively harness renewable solar energy to achieve…

Abstract

Purpose

This paper aims to demonstrate that, in line with the emerging trend of multifunctional yarn development, cotton yarn can effectively harness renewable solar energy to achieve photothermal conversion and thermochromism. This innovation not only maintains the comfort associated with natural fiber cotton yarn but also enhances its ultraviolet (UV) light resistance.

Design/methodology/approach

In this work, 4% zirconium carbide (ZrC) and thermochromic powder were adhered to cotton yarn through polyurethane (PU) by sizing coating method. After sizing, the two cotton yarns are twisted by ring spinning to obtain composite yarns with photothermal conversion and thermochromic functions.

Findings

The yarn obtained by cotton/6%PU/8% thermochromic dye single yarn and cotton/6%PU/4% ZrC single yarn composite is the best match. After 5 min of infrared light, the temperature of the composite yarn rose to the maximum, increasing by 36.1°C. The ΔE* value before and after irradiation of infrared lamp is 26.565, which proves that the thermochromic function is good. The yarn dryness unevenness was significantly reduced by 27.2%. The composite yarn has a UPF value of up to 89.22, and its performance characteristics remain stable after 100 minutes of washing.

Originality/value

The composite yarn’s photothermal conversion and thermochromism functions are mutually reinforcing. Using sunlight can simultaneously achieve heating and discoloration effects without consuming additional energy. The cotton yarn used in this application is versatile, and suitable for a wide range of uses including clothing, temperature visualization detection and other scenarios.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 August 2024

Roumaissa Laieb, Ilhem Ghodbane, Rahma Benyahia, Rim Lamari, Saida Zougar and Rochdi Kherrrat

This study aims to develop an electrochemical sensor for the detection of benzophenone (BP) as an alternative to conventional techniques that are known, expensive, complex and…

Abstract

Purpose

This study aims to develop an electrochemical sensor for the detection of benzophenone (BP) as an alternative to conventional techniques that are known, expensive, complex and less sensitive.

Design/methodology/approach

The developed sensor is a platinum electrode modified with a plasticized polymer film based on ß-cyclodextrin, using PVC as the polymer, PEG as the plasticizer and ß-CD as the ionophore. This sensor is characterized by various techniques, such as optical microscopy, scanning electron microscopy and cyclic voltammetry. This latter is also used for analyzing kinetic processes at the electrode/electrolyte interface and to evaluate the selectivity and sensitivity of the sensor.

Findings

The results highlight the performance of our sensor. In fact, it exhibits a linear response extending from 10−19 to 10−13 M, with a correlation coefficient of 0.9836. What is more, it has an excellent detection limit of 10−19 M and a good sensitivity of 21.24 µA/M.

Originality/value

The results of this investigation demonstrated that the developed sensor is an analytical tool of choice for the monitoring of BP in the aqueous phase. The suggested sensor is fast, simple, reproducible and inexpensive.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 19