Search results

1 – 10 of over 2000
Article
Publication date: 9 January 2024

Mahendra Saha, Pratibha Pareek, Harsh Tripathi and Anju Devi

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of…

Abstract

Purpose

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of the proposed attribute control chart which depends on the average run length (ARL) and third is to include real life examples for application purpose of the proposed attribute control chart.

Design/methodology/approach

(1) Select a random sample of size n from each subgroup from the production process and put them on a test for specified time t, where t = ? × µe. Then, count the numbers of failed items in each subgroup up to time t. (2) Step 2: Using np chart, define D = np, the number of failures, which also a random variable follows the Binomial distribution. It is better to use D = np chart rather than p chart because the authors are using number of failure rather than proportion of failure p. When the process is in control, then the parameters of the binomial distribution are n and p0, respectively. (3) Step 3: The process is said to be in control if LCL = D = UCL; otherwise, the process is said to be out of control. Hence, LCL and UCL for the proposed control chart.

Findings

From the findings, it is concluded that the GRD has smaller ARL values than the RD for specified values of parameters, which indicate that GRD performing well for out of control signal as compared to the RD.

Research limitations/implications

This developed control chart is applicable when real life situation coincide with RD and GRD.

Social implications

Researcher can directly use presented study and save consumers from accepting bad lot and also encourage producers to make good quality products so that society can take benefit from their products.

Originality/value

This article dealt with time truncated attribute median control chart for non-normal distributions, namely, the RD and GRD, respectively. The structure of the proposed control chart is developed based on median lifetime of the RD and GRD, respectively.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 March 2023

Laila Dahabiyeh, Ali Farooq, Farhan Ahmad and Yousra Javed

During the past few years, social media has faced the challenge of maintaining its user base. Reports show that the social media giants such as Facebook and Twitter experienced a…

Abstract

Purpose

During the past few years, social media has faced the challenge of maintaining its user base. Reports show that the social media giants such as Facebook and Twitter experienced a decline in their users. Taking WhatsApp's recent change of its terms of use as the case of this study and using the push-pull-mooring model and a configurational perspective, this study aims to identify pathways for switching intentions.

Design/methodology/approach

Data were collected from 624 WhatsApp users recruited from Amazon Mechanical Turk and analyzed using fuzzy set qualitative comparative analysis (fsQCA).

Findings

The findings identify seven configurations for high switching intentions and four configurations for low intentions to switch. Firm reputation and critical mass increase intention to switch, while low firm reputation and absence of attractive alternatives hinder switching.

Research limitations/implications

This study extends extant literature on social media migration by identifying configurations that result in high and low switching intention among messaging applications.

Practical implications

The study identifies factors the technology service providers should consider to attract new users and retain existing users.

Originality/value

This study complements the extant literature on switching intention that explains the phenomenon based on a net-effect approach by offering an alternative view that focuses on the existence of multiple pathways to social media switching. It further advances the authors’ understanding of the relevant importance of switching factors.

Details

Information Technology & People, vol. 37 no. 3
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 27 January 2023

Davit Marikyan, Savvas Papagiannidis, Omer F. Rana and Rajiv Ranjan

The coronavirus disease 2019 (COVID-19) pandemic has had a big impact on organisations globally, leaving organisations with no choice but to adapt to the new reality of remote…

1254

Abstract

Purpose

The coronavirus disease 2019 (COVID-19) pandemic has had a big impact on organisations globally, leaving organisations with no choice but to adapt to the new reality of remote work to ensure business continuity. Such an unexpected reality created the conditions for testing new applications of smart home technology whilst working from home. Given the potential implications of such applications to improve the working environment, and a lack of research on that front, this paper pursued two objectives. First, the paper explored the impact of smart home applications by examining the factors that could contribute to perceived productivity and well-being whilst working from home. Second, the study investigated the role of productivity and well-being in motivating the intention of remote workers to use smart home technologies in a home-work environment in the future.

Design/methodology/approach

The study adopted a cross-sectional research design. For data collection, 528 smart home users working from home during the pandemic were recruited. Collected data were analysed using a structural equation modelling approach.

Findings

The results of the research confirmed that perceived productivity is dependent on service relevance, perceived usefulness, innovativeness, hedonic beliefs and control over environmental conditions. Perceived well-being correlates with task-technology fit, service relevance, perceived usefulness, perceived ease of use, attitude to smart homes, innovativeness, hedonic beliefs and control over environmental conditions. Intention to work from a smart home-office in the future is dependent on perceived well-being.

Originality/value

The findings of the research contribute to the organisational and smart home literature, by providing missing evidence about the implications of the application of smart home technologies for employees' perceived productivity and well-being. The paper considers the conditions that facilitate better outcomes during remote work and could potentially be used to improve the work environment in offices after the pandemic. Also, the findings inform smart home developers about the features of technology which could improve the developers' application in contexts beyond home settings.

Details

Internet Research, vol. 34 no. 2
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 June 2023

Markus Brenner, Andreas Wald and Ronald Gleich

Process orientation is important for improving organizational performance. The process view is considered a key enabler of digital transformation, and thus management control…

Abstract

Purpose

Process orientation is important for improving organizational performance. The process view is considered a key enabler of digital transformation, and thus management control systems (MCS) are expected to incorporate this view. However, the existing body of knowledge is fragmented, as different process approaches are often considered independently following a reductionist view of control practices. This paper aims to provide recommendations for further research as well as guidance for practice by a systematic review of the state of research of MC for process orientation. It is based on both a comprehensive view to MC using an MCS package approach and a comprehensive view of process orientation.

Design/methodology/approach

A systematic literature review addressing major types of process orientation approaches was performed by applying the comprehensive MC framework of Malmi and Brown. The results were synthesized and propositions were developed.

Findings

All components of the MC framework, as well as MCS packages, are highly relevant for process orientation. Propositions regarding configurations of MC for process orientation show directions for future research. However, comprehensive considerations of packages and of individual components, especially cultural controls, remain scarce in the literature.

Originality/value

To the best of the authors‘ knowledge, this paper is the first of its kind to provide a comprehensive, structured overview of MC for process orientation, applying a nonreductionist view, based on an MCS Package approach, and consolidating the so far fragmented view of different process approaches.

Details

Journal of Accounting & Organizational Change, vol. 20 no. 2
Type: Research Article
ISSN: 1832-5912

Keywords

Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 2000