Search results

1 – 10 of over 8000
Article
Publication date: 13 March 2017

Mitul Thakorbhai Solanki and Dipak Vakharia

The purpose of this paper is to extend the Hertz equation for the contact interaction between a layered cylindrical hollow roller and a flat plate through an experimental…

Abstract

Purpose

The purpose of this paper is to extend the Hertz equation for the contact interaction between a layered cylindrical hollow roller and a flat plate through an experimental technique.

Design/methodology/approach

In this work, an experimental investigation is carried out for an elastic contact between layered cylindrical hollow rollers of different hollowness, ranging from 30 to 75 per cent hollowness and a flat plate. The footprint method was used for the evaluation of the contact width corresponding to the applied load.

Findings

The contact width for the layered cylindrical hollow roller was evaluated and the Hertz equation was extended on the basis of the experimental results.

Originality/value

The value of this research work is the development of an extended Hertz equation for a cylinder-on-plate configuration for a new kind of cylindrical roller.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 January 2017

Mitul Thakorbhai Solanki and Dipak Vakharia

The purpose of this paper is to present a finite element analysis (FEA) which shows the comparison between a layered cylindrical hollow roller bearing and hollow roller bearing.

Abstract

Purpose

The purpose of this paper is to present a finite element analysis (FEA) which shows the comparison between a layered cylindrical hollow roller bearing and hollow roller bearing.

Design/methodology/approach

In this work, FEA is carried out to solve the elastic contact between a layered cylindrical hollow roller and flat contact for different hollowness percentages ranging from 10 to 80 per cent. Graphical solution is developed to determine the optimum hollowness of a cylindrical roller bearing for which induced bending stress should be within endurance limit of the material.

Findings

Different parameters such as von Mises stress, contact pressure, contact width and deformation are shown here.

Originality/value

The value of this research work is the calculation of contact width and other parameters using FEA for layered cylindrical hollow roller bearing.

Details

Industrial Lubrication and Tribology, vol. 69 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 June 2019

Jing Liu, Linfeng Wang, Zhifeng Shi, Wennian Yu and Huifang Xiao

The purpose of this study is to investigate the contact models for contact and vibration features of cylindrical roller bearings (CRBs). CRBs are important parts of rotating…

Abstract

Purpose

The purpose of this study is to investigate the contact models for contact and vibration features of cylindrical roller bearings (CRBs). CRBs are important parts of rotating machinery. The contact deformation between the roller and the raceway is an essential research topic for the CRBs. The contact deformation between the roller and the raceway can greatly affect vibration characteristics and fatigue life of the CRBs. In this investigation, six different methods are adopted to calculate the contact deformation, contact area width and contact stress between the roller and raceways of a CRB.

Design/methodology/approach

In this paper, the contact deformations and the contact stiffnesses between the roller and the raceway of a CRB obtained by various well-known empirical methods (Lundberg’s, Palmgren’s, Houpert’s, Cheng’s and Hertzian methods) are directly compared with those by the finite element (FE) method. A two degree-of-freedom (2 DOF) dynamic model of the CRB is applied to investigate the effects of the contact stiffness obtained by different line contact deformation calculation methods on the vibration characteristics, such as the root mean square (RMS), the peak to peak (PTP), the crest factor and the kurtosis of the displacement, velocity and acceleration of the inner raceway.

Findings

The computational results show that different calculation methods for the contact deformations between rollers and raceways have significant effects on the vibrations of the CRB. It is found that that the differences of computational results obtained by Palmgren’s and Lundberg’s models with respect to the FE method are smaller than those by the other three methods, i.e. Houpert’s, Cheng’s and Hertzain models. The amplitude and peak frequency of the frequency response functions from Palmgren’s method are much more similar to those from the finite element method. The above results indicate that Palmgren’s method is a better calculation method for predicting the contact deformations and dynamics of the CRBs.

Originality/value

This work adopts six different methods to calculate the contact deformation, contact area width and contact stress between the roller and raceways of a CRB. Moreover, a vibration model of a CRB is used to investigate the effect of contact stiffness obtained by the above methods on the vibrations of the CRB. The works can give some guidance for the accurate analytical method for calculating the contact deformations between rollers and raceways and the vibrations of the CRB.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 September 2015

Kai Zhang, Qingfeng Meng, Wei Chen, Junning Li and Phil Harper

This paper aims to measure the oil film thickness between the roller and the inner ring in roller bearings by the ultrasonic method. The oil film thickness between the roller and…

Abstract

Purpose

This paper aims to measure the oil film thickness between the roller and the inner ring in roller bearings by the ultrasonic method. The oil film thickness between the roller and the inner ring in roller bearings is a key performance indicator of the bearing lubrication condition. As the oil film is very thin and the contact region is very narrow, measurement of this film thickness is very challenging. A promising ultrasonic method was used to measure this film thickness, and this method was expected to overcome some drawbacks in other methods.

Design/methodology/approach

A simplified roller bearing only configured one roller, and an inner ring was built up to investigate this measurement. A miniature piezoelectric element is bonded on the inner surface of the inner ring to measure the reflection coefficient from the layer of oil between the roller and the inner raceway. As the width of the line contact region is smaller than the width of the piezoelectric element, a ray model is used to calibrate the reflection coefficient measured. The quasi-static spring model is then used to calculate oil film thickness from the corrected reflection coefficient data.

Findings

The results measured by this method agree reasonably well with predictions from elastohydrodynamic lubrication (EHL) theory. Also, a dynamic displacement of the rig caused by the skid of the roller versus the inner ring was found under light-load and high-speed conditions.

Originality/value

This work shows that the oil film between the roller and the inner raceway in roller bearings can be measured accurately by ultrasound and shows a deal method when the contact width is smaller than the piezoelectric element width.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Yuqin Wen and Jin Yuan Tang

This paper aims to study the contact between rough cylindrical surfaces considering the elastic-plastic deformation of asperities.

Abstract

Purpose

This paper aims to study the contact between rough cylindrical surfaces considering the elastic-plastic deformation of asperities.

Design/methodology/approach

The elastic deformation of the nominal surface of the curved surface is considered, the contact area is discretized by the calculus thought and then the nominal distance between two surfaces is obtained by iteration after the pressure distribution is assumed. On the basis of the Zhao, Maietta and Chang elastic-plastic model, the contact area and the contact pressure of the rough cylindrical surfaces are calculated by the integral method, and then the solution for the contact between rough cylindrical surfaces is obtained.

Findings

The contact characteristic parameters of smooth surface Hertz contact, elastic contact and elastic-plastic contact between rough cylindrical surfaces are calculated under different plastic indexes and loads, and the calculation results are compared and analyzed. The analysis shows that the solution considering the elastic-plastic deformation of asperities for the contact between rough cylindrical surfaces is scientific and rational.

Originality/value

This paper provides a new effective method for the calculation of the contact between rough cylindrical surfaces.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 November 2018

Yong Yang, Wenguang Li, Jiaxu Wang and Qinghua Zhou

The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real…

Abstract

Purpose

The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real three-dimensional (3D) topography of tooth flanks.

Design/methodology/approach

Based on the mixed elastohydrodynamic lubrication (EHL) theory for infinite line contact, this paper proposes a complete model for involute helical gear pairs considering the real 3D topography of tooth flanks and the properties of non-Newtonian lubricant. Film thickness, contact load and contact area ratios at the mid-point of contact line are studied for each angular displacement of pinion. Both the total friction coefficient and surface flash temperature are calculated after obtaining the values of pressure and subsurface stress. Then, the influences of input parameters including rotational speed and power are investigated.

Findings

During the meshing process, contact load ratio and area ratio of the two rough surface cases first increase and then decrease; the maximum flash temperature rise (MFTR) on the gear is lower than that on the pinion first, but later the situation converses. For cylindrical gears, on the plane of action, there is a point or a line where the instantaneous friction reduces to a minimum value in a sudden, as the sliding–rolling ratio becomes zero. When rotational speed increases, film thickness becomes larger, and meanwhile, contact load ratio, coefficient of friction and MFTR gradually reduce.

Originality/value

A comprehensive analysis is conducted and a computer program is developed for meshing geometry, kinematics, tooth contact, mixed EHL characteristics, friction, FTR and subsurface stress of involute helical gear pairs. Besides, a numerical simulation model is developed, which can be used to analyze mixed lubrication with 3D machined roughness under a wide range of operating conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2021

Jiang Zhao, Zhengminqing Li, Hong Zhang and Rupeng Zhu

The purpose of this paper is to use a combination of numerical simulation and experiment to evaluate the performance of laser surface texturing (LST) in the field of gear…

430

Abstract

Purpose

The purpose of this paper is to use a combination of numerical simulation and experiment to evaluate the performance of laser surface texturing (LST) in the field of gear lubrication, and to more accurately predict the lubrication characteristics of different surfaces.

Design/methodology/approach

The method used in this paper is developed on the basis of the deterministic solution of the three-dimensional (3D) mixed elasto-hydrodynamic lubrication (EHL) model and the model parameters are corrected by friction test. The film pressure, film thickness and friction coefficient of different micro-textured tooth surfaces are predicted on the basis of accurate 3D mixed EHL models.

Findings

The results demonstrate that the micro-texture structure of the tooth surface can increase the local film thickness and enhance the lubricating performance of the tooth surface without drastically reducing the contact fatigue life. The stress distribution and friction characteristics of the tooth surface can be optimized by adjusting the micro-texture arrangement and the size of the micro-textures.

Originality/value

A new evaluation method using a 3D hybrid EHL model and friction test to predict the lubrication characteristics of LST is proposed, which can effectively improve the processing economy and save time.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2020-0423

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 September 2022

CholUk Ri, Hwan Namgung, Zhunhyok Zhang, Chunghyok Chae, Kwangil Ri, Pongguk Ho and Ryong Zhang

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the…

Abstract

Purpose

The rotor system supported by the cylindrical roller bearings is widely used in various fields such as aviation, space and machinery due to its importance. In the study of the dynamic characteristics of the cylindrical roller bearings, it is important to accurately calculate the stiffness of the cylindrical roller bearings. The stiffness of the cylindrical roller bearings is very important in the analysis of the vibration characteristics of the rotor system. Therefore, in this paper, the method of creating a comprehensive stiffness model of the cylindrical roller bearing is mentioned. The purpose of this study is to improve the dynamic stability of the rotor system supported by the cylindrical roller bearing by accurately establishing the comprehensive stiffness calculation model of the cylindrical roller bearings.

Design/methodology/approach

In consideration of the radial clearance of the cylindrical roller bearing, the radial load acting on the cylindrical roller bearing was derived, and based on this, a model for calculating the Hertz contact stiffness of the cylindrical roller bearing was created. Based on the load considering the radial clearance, an oil film stiffness model of the cylindrical roller bearing was created under the elastohydrodynamic lubrication (EHL) theory. Then, the comprehensive stiffness was calculated by combining Hertz contact stiffness and the oil film stiffness of the cylindrical roller bearing, and the dynamic parameters are calculated by using the MATLAB program.

Findings

When the radial clearance of the cylindrical roller bearing is considered, the comprehensive stiffness is larger than when the radial clearance is not taken into account, and the radial clearance of the cylindrical roller bearing is an important factor that directly affects the comprehensive stiffness of the cylindrical roller bearing.

Originality/value

In this paper, based on Hertz contact theory and the EHL theory, the authors investigated the method of creating a comprehensive stiffness model of the cylindrical roller bearing considering the radial clearance. These results will contribute to the theoretical basis for studying the mechanics of cylindrical roller bearings and optimizing their structures, and they will provide an important theoretical basis for analyzing the dynamic characteristics of the rotor system supported by the cylindrical roller bearing.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2004

Y.T. Feng and D.R.J. Owen

This paper proposes an energy‐based general polygon to polygon normal contact model in which the normal and tangential directions, magnitude and reference contact position of the…

Abstract

This paper proposes an energy‐based general polygon to polygon normal contact model in which the normal and tangential directions, magnitude and reference contact position of the normal contact force are uniquely defined. The model in its final form is simple and elegant with a clear geometric perspective, and also possesses some advanced features. Furthermore, it can be extended to a more complex situations and in particular, it may also provide a sound theoretical foundation to possibly unifying existing contact models for all types of (convex) objects.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2017

Zhijian Wang, Xuejin Shen, Xiaoyang Chen, Qiang Han and Lei Shi

The purpose of this paper is to study starvation in grease-lubricated finite line contacts and to understand film-forming mechanisms of grease-lubricated finite line contacts.

Abstract

Purpose

The purpose of this paper is to study starvation in grease-lubricated finite line contacts and to understand film-forming mechanisms of grease-lubricated finite line contacts.

Design/methodology/approach

A multiple-contact optical elastohydrodynamic (EHL) test rig is constructed to investigate the influences of lubricant properties on film thickness and lubrication conditions at different working conditions. The film thickness is calculated according to the relative light intensity principle. The degree of starvation is evaluated by the air–oil meniscus distance and the corresponding film thickness.

Findings

The experimental results show that for greases with high-viscosity base oil, the high-frequency fluctuation of film thickness is observed in low-speed operating conditions. Reducing the viscosity of the base oil and improving running speed can weaken the fluctuation of film thickness. The degree of starvation increases with increasing base oil viscosity, rolling speed and the crown drop. In addition, reducing the replenishment time by reducing the gap between the rollers also can increase the degree of starvation.

Originality/value

Starvation is often to occur in finite line contacts, such as roller bearings and gears; there are still limited finite line contact EHL test rigs, much less multiple-contact optical test rigs. Therefore, the present work is undertaken to construct the multiple-contact test rig and to evaluate the mechanism of starvation in finite line contacts.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 8000