Search results

1 – 10 of 358
Article
Publication date: 2 May 2024

Alamgir Khan, Javed Iqbal and Rasool Shah

This study presents a two-step numerical iteration method specifically designed to solve absolute value equations. The proposed method is valuable and efficient for solving…

Abstract

Purpose

This study presents a two-step numerical iteration method specifically designed to solve absolute value equations. The proposed method is valuable and efficient for solving absolute value equations. Several numerical examples were taken to demonstrate the accuracy and efficiency of the proposed method.

Design/methodology/approach

We present a two-step numerical iteration method for solving absolute value equations. Our two-step method consists of a predictor-corrector technique. The new method uses the generalized Newton method as the predictor step. The four-point open Newton-Cotes formula is considered the corrector step. The convergence of the proposed method is discussed in detail. This new method is highly effective for solving large systems due to its simplicity and effectiveness. We consider the beam equation, using the finite difference method to transform it into a system of absolute value equations, and then solve it using the proposed method.

Findings

The paper provides empirical insights into how to solve a system of absolute value equations.

Originality/value

This paper fulfills an identified need to study absolute value equations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2024

Nalinda Dissanayaka, Hamish Alexander, Danilo Carluccio, Michael Redmond, Luigi-Jules Vandi and James I. Novak

Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as…

Abstract

Purpose

Three-dimensional (3D)printed skulls for neurosurgical training are increasingly being used due to the widespread access to 3D printing technology, their low cost and accuracy, as well as limitations and ethical concerns associated with using human cadavers. However, little is known about the risks of airborne particles or volatile organic compounds (VOCs) released while drilling into 3D-printed plastic models. The aim of this study is to assess the level of exposure to airborne contaminants while burr hole drilling.

Design/methodology/approach

3D-printed skull samples were produced using three different materials (polyethylene terephthalate glycol [PETG], white resin and BoneSTN) across three different 3D print processes (fused filament fabrication, stereolithography [SLA] and material jetting). A neurosurgeon performed extended burr hole drilling for 10 min on each sample. Spot measurements of particulate matter (PM2.5 and PM10) were recorded, and air samples were analysed for approximately 90 VOCs.

Findings

The particulate matter for PETG was found to be below the threshold value for respirable particles. However, the particulate matter for white resin and BoneSTN was found to be above the threshold value at PM10, which could be harmful for long periods of exposure without personal protective equipment (PPE). The VOC measurements for all materials were found to be below safety thresholds, and therefore not harmful.

Originality/value

To the best of the authors’ knowledge, this is the first study to evaluate the safety of 3D-printed materials for burr hole surgical drilling. It recommends PETG as a safe material requiring minimal respiratory control measures, whereas resin-based materials will require safety controls to deal with airborne particles.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2024

Natiq Yaseen Taha Al-Maneehlawi and Akram Jalil Kadhim Shubbar

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Abstract

Purpose

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Design/methodology/approach

In this research, the third-order shear deformation theory of the beam with hyperbolic shear-strain function is used. Hamilton’s principle is applied to derive the motion equations. To simulate nonsimultaneous impacts, by using the Hertz nonlinear contact law, the contact of the impactors with different times is simulated. Comparisons with other articles are carried out in the one impactor form.

Findings

In the parametric study, the histories of the contact force and displacement of the beam are investigated in the presence of only one impactor in the center of the beam and also in the presence of three impactors, one in the center of the beam and the other two around the first impactor with a delay. One of the important and noteworthy points is that the presence of two impactors with a delay causes the maximum contact force and contact time to decrease and the maximum displacement of the beam center to increase.

Originality/value

The original point of this paper is what is the difference between the impact response of one projectile and three nonsimultaneous projectiles on the beam.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 April 2024

Thuy Thanh Tran, Roger Leonard Burritt, Christian Herzig and Katherine Leanne Christ

Of critical concern to the world is the need to reduce consumption and waste of natural resources. This study provides a multi-level exploration of the ways situational and…

Abstract

Purpose

Of critical concern to the world is the need to reduce consumption and waste of natural resources. This study provides a multi-level exploration of the ways situational and transformational links between levels and challenges are related to the adoption and utilization of material flow cost accounting in Vietnam, to encourage green productivity.

Design/methodology/approach

Based on triangulation of public documents at different institutional levels and a set of semi-structured interviews, situational and transformational links and challenges for material flow cost accounting in Vietnam are examined using purposive and snowball sampling of key actors.

Findings

Using a multi-level framework the research identifies six situational and transformational barriers to implementation of material flow cost accounting and suggests opportunities to overcome these. The weakest links identified involve macro-to meso-situational and micro-to macro-transformational links. The paper highlights the dominance of meso-level institutions and lack of focus on micro transformation to cut waste and enable improvements in green productivity.

Practical implications

The paper identifies ways for companies in Vietnam to reduce unsustainability and enable transformation towards sustainable management and waste reduction.

Originality/value

The paper is the first to develop and use a multi-level/multi-time period framework to examine the take-up of material flow cost accounting to encourage transformation towards green productivity. Consideration of the Vietnamese case builds understanding of the challenges for achieving United Nations Sustainable Development Goal number 12, to help enable sustainable production and consumption patterns.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 29 April 2024

Zhuofeng Li, Shide Mo, Kaiwen Yang and Yunmin Chen

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Abstract

Purpose

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Design/methodology/approach

An arbitrary Lagrangian–Eulerian scheme is adopted to preserve the quality of mesh throughout the numerical simulation. Simplified methods of layered penetration and coupled pore pressure analysis of cone penetration have been proposed and verified by previous studies. The investigation is then extended by the present work to study the cone penetration test in a two-layered clay profile assumed to be homogeneous with the modified Cam clay model.

Findings

The reduction of the range of pore pressure with decreasing PF will cause a decrease of the sensing distance. The PF of the underlying soil is one of the factors that determine the development distance. The interface can be obtained by taking the position of the maximum curvature of the penetrometer resistance curve in the case of stiff clay overlying soft clay. In the case of soft clay overlying stiff clay, the interface locates at the maximum curvature of the penetrometer resistance curve above about 1.6D.

Research limitations/implications

The cone penetration analyses in this paper are conducted assuming smooth soil-cone contact.

Originality/value

A simplified method based on ALE in Abaqus/Explicit is proposed for layered penetration, which solves the problem of mesh distortion at the interface between two materials. The stiffness equivalent method is also proposed to couple pore pressure during cone penetration, which achieves efficient coupling of pore water pressure in large deformations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 May 2024

Sara Guerra, Oscar Ribeiro, Rita Carvalho and Liliana Sousa

Older adults often experience loneliness as a vicious circle, in which loneliness builds more loneliness. Breaking this cycle is key to minimize the experience of loneliness. MOAI…

Abstract

Purpose

Older adults often experience loneliness as a vicious circle, in which loneliness builds more loneliness. Breaking this cycle is key to minimize the experience of loneliness. MOAI LABS is a European project that adopts a codesign process to develop digital solutions to address loneliness in older adults. This study aims to adopt a solution-based approach to capture solutions that community-dwelling older Portuguese adults who feel loneliness already experience in their lives.

Design/methodology/approach

Six individuals (aged 64–86 years) answered two solution-based questions: miracle and exceptions. Findings were obtained from one group discussion session that was audio-recorded, transcribed and submitted to qualitative analysis.

Findings

Main findings suggest that participants feel comfort in imagining their desired scenarios that involve being with their loved ones, better health conditions, adequate housing settings and contact with nature.

Originality/value

The findings highlight that leaving loneliness alone seems to be a path that may be facilitated by digital solutions that display solution-based questions, such as online platforms for social connection, virtual care and monitoring, design of smart home devices and the creation of immersive virtual reality experiences to explore nature, complemented by psychosocial support.

Details

Working with Older People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-3666

Keywords

Open Access
Article
Publication date: 16 April 2024

Keon-Hyung Ahn

This study aims to provide the main contents of the revision of the 2023 OECD Guidelines for Multinational Enterprises and suggest implications for the Korean government and…

Abstract

Purpose

This study aims to provide the main contents of the revision of the 2023 OECD Guidelines for Multinational Enterprises and suggest implications for the Korean government and multinational enterprises.

Design/methodology/approach

Following the brief history of the revision of OECD Guidelines for Multinational Enterprises, this study reviews and evaluates major substantive and procedural revisions of the 2023 OECD Guidelines, and then suggests countermeasures for Korean government and businesses.

Findings

The most significant substantive change of the 2023 revision is that expectations for environmental due diligence and disclosure obligations, including climate change and biodiversity, for multinational enterprises have been expanded and strengthened. Regarding procedural changes, the biggest change is the introduction of a basis rule for the National Contact Points for Responsible Business Conduct (NCPs for RBC) to judge each issue and a rule that the final statement must include follow-up details and deadlines, which is expected to strengthen the effectiveness of the NCP dispute resolution mechanism.

Originality/value

This study is the first academic paper to introduce major substantive and procedural revisions to the 2023 OECD Guidelines for Multinational Enterprises in Korea. This study also provides implications for the Korean government and companies following the 2023 revised OECD Guidelines for Multinational Enterprises as follows. First, the Korean government must establish a public–private partnership to closely communicate to prevent Korean companies from being harmed by failing to meet strengthening international Environment, Social and Governance (ESG) standards. In addition, Korean government should actively participate in ESG-related international forums, including the OECD, and strive to reflect the needs and interests of Korean companies. Second, the Korean NCP should strengthen its activities to prevent potential damage by expanding education and promotions for Korean businesses on related overseas legislative trends and NCP dispute case studies so that Korean companies can effectively deal with the strengthened ESG standards. Third, Korean multinational enterprises should preemptively establish an advanced ESG management system to seize new opportunities in the global supply chain previously concentrated in China and India in the process of reorganizing global supply chains according to the trend of strengthening ESG standards and the US value alliance strategy.

Details

Journal of International Logistics and Trade, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1738-2122

Keywords

Access

Year

Last month (358)

Content type

Earlycite article (358)
1 – 10 of 358