Search results

1 – 10 of 349
Article
Publication date: 14 September 2023

Xunlei Shi, Qingyuan Wu, Jianjian Deng, Ken Chen and Jiwen Zhang

The purpose of this paper is to propose a strategy for the final assembly of helicopter fuselage with weak rigidity parts and mismatched jointing butt ends.

Abstract

Purpose

The purpose of this paper is to propose a strategy for the final assembly of helicopter fuselage with weak rigidity parts and mismatched jointing butt ends.

Design/methodology/approach

The strategy is based on path planning methods. Compared with traditional path planning methods, the configuration-space and collision detection in the method are different. The obstacles in the configuration-space are weakly rigid and allow continuous contact with the robot. The collision detection is based on interference magnitudes, and the result is divided into no collision, weak collision and strong collision. Only strong collision is unacceptable. Then a compliant jointing path planning algorithm based on RRT is designed, combined with some improvements in search efficiency.

Findings

A series of planning results show that the efficiency of this method is higher than original RRT under the same conditions. The effectiveness of the method is verified by a series of simulations and experiments on two sets of systems.

Originality/value

There are few reports on the automation technology of helicopter fuselage assembly. This paper analyzes the problem and provides a solution from the perspective of path planning. This method contains a new configuration-space and collision detection method adapted to this problem and could be intuitive for the jointing of other weakly rigid parts.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 22 April 2024

Hesham Mohsen Hussein Omar, Mohamed Fawzy Aly Mohamed and Said Megahed

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper…

Abstract

Purpose

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper studies the applicability of different CG designs and the efficiency of some design parameters.

Design/methodology/approach

After reviewing a number of different papers, two designs were selected for a number of exploratory experiments. Using design of experiments (DOE) techniques to identify important design parameters. Finally, the efficiency of the parts was investigated.

Findings

The research finds that a simpler design sacrifices some effectiveness in exchange for a remarkable decrease in production cost. Decreasing infill percentage of previous designs and 3D printing them, out of TPU, experimenting with different parameters yields functional products. Moreover, the paper identified some key parameters for further optimization attempts of such prototypes.

Research limitations/implications

The cost of conducting FFF experiments for TPU increases dramatically with product size, number of parameters studied and the number of experiments. Therefore, all three of these factors had to be kept at a minimum. Further confirmatory experiments encouraged.

Originality/value

This paper addresses an identified need to investigate applications of FFF and TPU in manufacturing functional efficient flexible mechanisms, grippers specifically. While most research focused on designing for increased performance, some research lacks discussion on design philosophy, as well as manufacturing issues. As the needs for flexible grippers vary from high-performance grippers to lower performance grippers created for specific functions/conditions, some effectiveness can be sacrificed to reduce cost, reduce complexity and improve applicability in different robotic assemblies and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 October 2023

Rania AbuRaya

Audit consortium of joint and dual audits is one of the most controversial mechanisms aimed at improving audit quality and resolving several related debatable issues. This study…

Abstract

Purpose

Audit consortium of joint and dual audits is one of the most controversial mechanisms aimed at improving audit quality and resolving several related debatable issues. This study aims to empirically investigate the impact of audit consortium on audit quality assessment in Egypt. It specifically examines whether audit opinion modification level is triggered by joint and dual audits existence and whether it is influenced by the relative importance of the auditor pair combination types.

Design/methodology/approach

A sample of companies listed on the Egyptian Stock Exchange constituting the EGX 30 index is examined over a period of five years, from 2016 to 2020. A quantitative research methodology is used, using content analysis of companies’ audit reports and carrying out longitudinal panel ordinary least squares multiple regression tests.

Findings

Results show that audit quality is significantly enhanced by conducting joint and dual audits of Egyptian companies’ financial statements. Findings indicate that both joint and dual audits significantly increase auditors’ propensity to modify audit opinions as compared to companies that engage in single audits. However, this increase in audit quality is not supported by the presence of Big 4 joint auditors or affiliated joint auditors, while the impact of Big 4 dual auditors cannot be confirmed. Nevertheless, such a potential increase in audit opinion modification is boosted by the presence of affiliated dual auditors, which appears to translate into higher quality.

Research limitations/implications

The study has important implications for researchers, corporates, those charged with governance, financial statement users, auditors, regulators and standard setters, who might be interested in whether an audit consortium and a particular auditor pair combination are associated with superior audit quality. It provides empirical evidence that might contribute to the continuous challenge of promoting the quality and effectiveness of the external audit.

Originality/value

This study adds to the relatively limited and challenging literature on the potential contribution of audit consortium, using audit opinion modification level as a direct assessment of audit quality. It extends the scope of prior research by examining the existence of joint and dual audits and the relative importance of joint and dual auditor pair combination types. The study provides key insights from a distinctive and complex emerging audit market.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 September 2023

Fei Qi, Dongming Bai, Xiaoming Dou, Heng Zhang, Haishan Pei and Jing Zhu

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the…

Abstract

Purpose

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the robot.

Design/methodology/approach

The kinematics model is derived by the geometric analysis method under the piecewise constant curvature assumption, and the workspace and dexterity of the proposed robot are analyzed to optimize its structure parameters. Moreover, the statics model is established by the principle of virtual work, which is used to analyze the mapping relationship between the bending deformation and the applied forces/torques. To improve the control accuracy of the robot, a model-based controller is put forward.

Findings

Results of the experiments verify the feasibility of the proposed continuum structure and the correctness of the established model and the control method. The force deviation between the theoretical value and the actual value is relatively small, and the mean value of the deviation between the driving forces is only 0.46 N, which verify the established statics model and the controller.

Originality/value

The proposed model and motion controller can realize its accurate bending control with a few deviations, which can be used as the reference for the motion planning and dynamic model of the continuum robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 November 2022

Qingyang Liu, Ziyang Zhang, Denizhan Yavas, Wen Shen and Dazhong Wu

Understanding the effect of process parameters on interfaces and interfacial bonding between two materials during multi-material additive manufacturing (MMAM) is crucial to the…

Abstract

Purpose

Understanding the effect of process parameters on interfaces and interfacial bonding between two materials during multi-material additive manufacturing (MMAM) is crucial to the fabrication of high-quality and strong multi-material structures. The purpose of this paper is to conduct an experimental and statistical study to investigate the effect of process parameters of soft and hard materials on the flexural behavior of multi-material structures fabricated via material extrusion-based MMAM.

Design/methodology/approach

Sandwich beam samples composed of a soft core and hard shells are fabricated via MMAM under different printing conditions. A design of experiments is conducted to investigate the effect of the print speed and nozzle temperature on the flexural behavior of soft-hard sandwich beams. Analysis of variance and logistic regression analysis are used to analyze the significance of each process parameter. The interfacial morphology of the samples after the flexural tests is characterized. Thermal distributions during the MMAM process are captured to understand the effect of process parameters on the flexural behavior based on inter-bonding formation mechanisms.

Findings

Experimental results show that the soft-hard sandwich beams exhibited two different failure modes, including shell failure and interfacial failure. A transition of failure modes from interfacial failure to shell failure is observed as the nozzle temperatures increase. The samples that fail because of interfacial cracking exhibit a pure adhesive failure because of weak interfacial fracture properties. The samples that fail because of shell cracking exhibit a mixed adhesive and cohesive failure. The flexural strength and modulus are affected by the nozzle temperature for the hard material and the print speeds for both hard and soft materials significantly.

Originality/value

This paper first investigates the effect of process parameters for soft and hard materials on the flexural behavior of additively manufactured multi-material structures. Especially, the ranges of the selected process parameters are distinct, and the effect of all possible combinations of the process parameters on the flexural behavior is characterized through a full factorial design of experiments. The experimental results and conclusions of this paper provide guidance for future research on improving the interfacial bonding and understanding the failure mechanism of multi-material structures fabricated by MMAM.

Article
Publication date: 8 June 2023

Amador Chapa, Enrique Cuan-Urquizo, PD Urbina-Coronado and Armando Roman-Flores

Fused filament fabrication (FFF) is a popular technique in rapid prototyping capable of building complex structures with high porosity such as cellular solids. The study of…

292

Abstract

Purpose

Fused filament fabrication (FFF) is a popular technique in rapid prototyping capable of building complex structures with high porosity such as cellular solids. The study of cellular solids is relevant by virtue of their enormous potential to exhibit non-traditional deformation mechanisms. The purpose of this study is to exploit the benefits of the FFF technology to fabricate re-entrant honeycomb structures using thermoplastic polyurethane (TPU) to characterize their mechanical response when subjected to cyclic compressive loadings.

Design/methodology/approach

Specimens with different volume fraction were designed, three-dimensionally printed and tested in uniaxial cyclic compressions up until densification strain. The deformation mechanism and apparent elastic moduli variation throughout five loading/unloading cycles in two different loading orientations were studied experimentally.

Findings

Experimental results demonstrated a nonlinear relationship between volume fraction and apparent elastic modulus. The amount of energy absorbed per loading cycle was computed, exhibiting reductions in energy absorbed of 12%–19% in original orientation and 15%–24% when the unit cells were rotated 90°. A softening phenomenon in the specimens was identified after the first compression when compared to second compression, with reduction in apparent elastic modulus of 23.87% and 28.70% for selected samples V3 and H3, respectively. Global buckling in half of the samples was observed, so further work must include redesign in the size of the samples.

Originality

The results of this study served to understand the mechanical response of TPU re-entrant honeycombs and their energy absorption ability when compressed in two orientations. This study helps to determine the feasibility of using FFF as manufacturing method and TPU to construct resilient structures that can be integrated into engineering applications as crash energy absorbers. Based on the results, authors suggest structure’s design optimization to reduce weight, higher number of loading cycles (n > 100) and crushing velocities (v > 1 m/s) in compression testing to study the dynamic mechanical response of the re-entrant honeycomb structures and their ability to withstand multiple compressions.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 April 2023

Akmalia Mohamad Ariff, Norakma Abd Majid, Khairul Anuar Kamarudin, Ahmad Firdhauz Zainul Abidin and Siti Nurain Muhmad

This study aims to examine the association between environmental, social and governance (ESG) performance and cash holdings, as well as whether this association is moderated by…

Abstract

Purpose

This study aims to examine the association between environmental, social and governance (ESG) performance and cash holdings, as well as whether this association is moderated by Shariah-compliant status. The aim was to test the joint effect of two ethical precepts, namely, the ESG and Shariah-compliant status, in explaining variations in cash holdings.

Design/methodology/approach

A sample set that consisted of 9,244 firm-year observations from 25 countries from 2016 to 2020 was analysed using regression analysis. Firm-level data were sourced from Thomson Reuters and Refinitiv databases, while country-level data were derived from the World Bank and Hofstede Insights websites.

Findings

Firms with greater ESG performances were found to have higher cash holdings. The positive association between ESG performance and cash holdings was greater for Shariah-compliant firms compared to non-Shariah-compliant firms. In support of the stakeholder theory, the evidence indicated that Shariah-compliant firms with higher ESG commitments also have higher cash holdings as part of their corporate strategy.

Practical implications

These findings provided further comprehension to investors that ESG practices among Shariah-compliant firms are essential information during investment decision-making processes.

Social implications

These findings highlighted ethical corporate practices through two frameworks, namely, ESG commitment and Shariah compliance; hence, contributing towards strategies to reach the Sustainable Development Goal 16 of promoting just, peaceful and inclusive societies.

Originality/value

This study has focused on the motives for cash holdings by considering the ethical precepts embodying ESG and Shariah compliance to uphold the positive impact of high cash reserves.

Details

Journal of Islamic Accounting and Business Research, vol. 15 no. 3
Type: Research Article
ISSN: 1759-0817

Keywords

Article
Publication date: 2 January 2024

James Routledge

This paper examines whether the adoption of Japan’s Stewardship Code by institutional investors influences their preference for investee companies' governance quality. The Code…

Abstract

Purpose

This paper examines whether the adoption of Japan’s Stewardship Code by institutional investors influences their preference for investee companies' governance quality. The Code, introduced by the Financial Services Agency in 2014, promotes constructive engagement between institutional investors and investee companies. Engagement with investees should improve institutional investors' ability to assess governance quality across their portfolios. The paper examines if this results in a positive relationship between the levels of Code-compliant institutional shareholding and investee governance quality.

Design/methodology/approach

The association between Code-compliant institutional shareholding levels and a governance quality score is examined for Nikkei 500 companies.

Findings

A positive association is observed between shareholdings by Code-compliant institutional investors and investee governance, with board independence playing a key role. Analysis shows that the association between institutional shareholding and governance is stronger for the Code-compliant shareholding than for overall institutional shareholdings. In addition, no significant relationship is found between the levels of shareholding by non-Code-compliant institutional investors and the governance quality score of investee companies. Taken together, the results suggest that Code adoption strengthens institutional investors' preference for high-quality investee governance.

Originality/value

Despite the introduction of stewardship regulation worldwide, there is a scarcity of empirical research that examines its operation. The study contributes to the existing literature by providing insights into how compliance with stewardship regulation influences institutional investor decision-making.

Details

Managerial Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0307-4358

Keywords

1 – 10 of 349