Search results

1 – 10 of over 11000
Article
Publication date: 1 May 1940

J. Corner

TWO distinct types of climb arise in aviation. In the first, it is necessary to climb to a given height without attaching any importance to horizontal distance covered. An example…

Abstract

TWO distinct types of climb arise in aviation. In the first, it is necessary to climb to a given height without attaching any importance to horizontal distance covered. An example is a climb to take up patrol at a given height. Obviously the quickest way to do this is to climb at the maximum rate of climb possible at each instant. The second type of climb is more important. In this it is necessary to climb to cruising height while, at the same time, travelling as far as possible in a certain horizontal direction. Examples are the initial climb of transport 'planes and bombers, and the “chasing climb” of a fighter which has taken off to pursue an enemy. It seems possible that the first type of climb is not the best in this case; a flatter climb, such as that shown dotted in Fig. 1, may have a horizontal speed sufficiently great to more than compensate for the extra time required to reach cruising height—vertical distances are exaggerated to show more clearly.

Details

Aircraft Engineering and Aerospace Technology, vol. 12 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 September 2015

Erica Lynn Thomas, Anna Puig Ribera, Anna Senye-Mir, Sheila Greenfield and Frank Eves

Worksites have been targeted as an important setting for physical activity interventions. A recent emphasis for health promoters is the use of point-of-choice interventions to…

Abstract

Purpose

Worksites have been targeted as an important setting for physical activity interventions. A recent emphasis for health promoters is the use of point-of-choice interventions to encourage stair climbing at work. The purpose of this paper is to explore three point-of-choice campaigns to increase stair climbing at work.

Design/methodology/approach

Ten focus groups and a rating task were conducted with 59 employees from a University and a University Hospital in the UK. Focus groups were structured around three messages and four prompts and sought to explore the motivational power of the resources, identify factors contributing to their effectiveness and provide recommendations to improve and optimize content. Benefits and barriers to stair climbing at work were also explored. Focus groups were recorded, transcribed and coded to identify key themes.

Findings

Intra-personal factors health, motivation, social norms and time management influence stair climbing at work. Critically, extra-personal factors associated with the worksite itself can also bias a traveler’s choice independently of any intervention. Results suggest that messages targeting heart health have the greatest impact on reported propensity to climb the stairs at work. Messages targeting rate of respiration for fitness, however, may have a negative effect given that most people want to avoid getting out of breath at work.

Originality/value

Qualitative research is essential for developing and refining the design detail of point-of-choice interventions and tailoring their components to address individuals’ needs in different settings but there is little evidence of this in practice.

Details

International Journal of Workplace Health Management, vol. 8 no. 3
Type: Research Article
ISSN: 1753-8351

Keywords

Article
Publication date: 3 July 2009

P. Mirosavljević, S. Gvozdenović and O. Čokorilo

The purpose of this paper is to define minimum cost technique of turbo fan transport aircraft in the presence of dynamic change of aircraft performance. Results can be practical…

Abstract

Purpose

The purpose of this paper is to define minimum cost technique of turbo fan transport aircraft in the presence of dynamic change of aircraft performance. Results can be practical applicable in airlines for achieving minimal operation costs.

Design/methodology/approach

Logarithmic differential is applied for defining conditions in order to achieve optimal Mach number for minimal climb cost. This condition is solved numerically by using Newton‐Ramphson method, to obtain optimal Mach number distribution with altitude. Conclusion about optimal top of climb (TOC) is defined after analyses for different aircraft mass and cost indexes.

Findings

Proposed method of minimum cost climb resulting in potential savings up to 5 per cent compared to Aircraft Flight Manual climb law. Proposed method also made correction of climb law and optimal TOC under existence of aircraft performance degradation.

Practical implications

Use of defined climb law and optimal TOC will minimize cost of en route flight profile.

Originality/value

At present, there is no definition of climb technique for minimum cost of en route flight profile, under dynamic degradation of aircraft performance. Final results are standardized to become applicable and easy to use with modern and old type of flight management system.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 18 May 2021

Yanzhang Yao, Wei Wang, Yue Qiao, Zhihang He, Fusheng Liu, Xuelong Li, Xinxin Liu, Dehua Zou and Tong Zhang

The purpose of this paper is to describe the design and development of a novel series-parallel robot, which aims to climb on the transmission tower.

Abstract

Purpose

The purpose of this paper is to describe the design and development of a novel series-parallel robot, which aims to climb on the transmission tower.

Design methodology approach

This study introduces a hybrid robot, which consists of adsorption and two 3-degree of freedom (DOF) translation parallel legs connected by a body linkage. The DOF of the legs ensures that the robot can move on the climbing plane, also contribute to a compact design of the robot. An electromagnet is used to adsorb onto the transmission tower, simplifying the overall structure. Based on the robot design, this paper further defines its climbing gait and adopt the 6th B-spline curves for climbing trajectory planning under different working environments.

Findings

The developed prototype that implements the design of the robot, which was used in simulation and experiments, showing that the robot is capable of climbing in the test environments with the planned climbing gait.

Originality value

The hybrid robot is able to climb under varying degrees of inclinations and cross the obstacles, and the magnetic attraction can ensure stable climbing.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2019

Guoda Chen, Huafeng Yang, Huiqiang Cao, Shiming Ji, Xi Zeng and Qian Wang

For the climbing rod object with large diameter variation and the need of obstacle crossing, this paper aims to propose a new embracing-type climbing robot named as EVOC-I robot.

Abstract

Purpose

For the climbing rod object with large diameter variation and the need of obstacle crossing, this paper aims to propose a new embracing-type climbing robot named as EVOC-I robot.

Design/methodology/approach

The design philosophy and structural scheme are introduced. The kinematic analysis of embracing and telescoping mechanisms is carried out to provide the theoretical foundation for the effective climbing of the robot. Based on the prototype robot, three preliminary experiments are carried out to verify the effectiveness of the designed robot.

Findings

The theoretical and experimental analyses have verified the reasonability and effectiveness of the proposed robot design.

Research limitations/implications

As the preliminary study, the prototype still need a lot of improvement. The experimental verification is also limited. Future work will focus on improving the design and increasing the theoretical analysis, especially increasing experimental study and designing the next generation of the rod climbing robot.

Practical implications

The designed climbing robot can be used for climbing the rod with variation diameter and flange obstacle, especially the lightening rod in the transformer substation.

Originality/value

The paper designs a new climbing robot that integrates the ability of large variation diameter adaptation and obstacle crossing.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 September 2019

Robert Bogue

This paper aims to provide details of recent research into robots capable of ascending vertical or near-vertical surfaces and to illustrate how the ability to climb is set to…

Abstract

Purpose

This paper aims to provide details of recent research into robots capable of ascending vertical or near-vertical surfaces and to illustrate how the ability to climb is set to resolve a critical industrial need arising from the growth in renewable energy.

Design/methodology/approach

Following a short introduction, the first parts of this paper describe a selection of recent research activities that involve innovative concepts and designs. The second part discusses climbing robot developments aimed at the automated inspection, maintenance and repair of wind turbine blades. Brief concluding comments are drawn.

Findings

Robots that can ascend vertical or near-vertical surfaces are the topic of an extensive and technologically innovative research effort. Many developments take their inspiration from the climbing abilities of living creatures. Drones with the ability to adhere to and climb vertical surfaces are also being developed. Potential applications include inspection, surveillance and search and rescue. Climbing robots are poised to provide a solution to the need to de-man and reduce the cost of inspecting and maintaining composite wind turbine blades.

Originality/value

This provides an insight into recent innovations in climbing robot concepts and designs and shows how the ability to ascend vertical surfaces is being exploited in the robotic inspection, maintenance and repair of wind turbine blades.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 January 2018

Xiaolong Lu, Shiping Zhao, Xiaoyu Liu and Yishu Wang

The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external…

Abstract

Purpose

The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external surface of a tower and assisting the electricians to complete some maintenance tasks.

Design/methodology/approach

The paper introduces a pole-climbing robot, which consists of a 5-DOF mechanical arm and two novel grippers. The gripper is composed of a two-finger clamping module and a retractable L-shaped hook module. The robot is symmetrical in structure, and the rotary joint for connecting two arms is driven by a linear drive mechanism.

Findings

The developed prototype proved a new approach for the inspection and maintenance of the electricity pylon. The gripper can reliably grasp the angle bars with different specifications by using combined movement of the two-finger clamping module and the retractable L-shaped hook module and provide sufficient adhesion force for the Pylon-Climber II.

Practical implications

The clamping experiments of the gripper and the climbing experiments of the robot were carried out on a test tower composed of some angle bars with different specification.

Originality/value

This paper includes the design and development of a 5-DOF biped climbing robot for electricity pylon maintenance. The climbing robot can move on the external surface of the electric power tower through grasping the angle bar alternatively. The gripper that is composed of a two-finger gripping module and a retractable L-shaped hook module is very compact and can provide reliable adhesion force for the climbing robot.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 May 2019

Fengyu Xu and Quansheng Jiang

Field robots can surmount or avoid some obstacles when operating on rough ground. However, cable-climbing robots can only surmount obstacles because their moving path is…

Abstract

Purpose

Field robots can surmount or avoid some obstacles when operating on rough ground. However, cable-climbing robots can only surmount obstacles because their moving path is completely restricted along the cables. This paper aims to analyse the dynamic obstacle-surmounting models for the driving and driven wheels of the climbing mechanism, and design a mechanical structure for a bilateral-wheeled cable-climbing robot to improve the obstacle crossing capability.

Design/methodology/approach

A mechanical structure of the bilateral-wheeled cable-climbing robot is designed in this paper. Then, the kinematic and dynamic obstacle-surmounting of the driven and driving wheels are investigated through static-dynamic analysis and Lagrangian mechanical analysis, respectively. The climbing and obstacle-surmounting experiments are carried out to improve the obstacle crossing capability. The required motion curve, speed and driving moment of the robot during obstacle-surmounting are generated from the experiments results.

Findings

The presented method offers a solution for dynamic obstacle-surmounting analysis of a bilateral-wheeled cable-climbing robot. The simulation, laboratory testing and field experimental results prove that the climbing capability of the robot is near-constant on cables with diameters between 60 and 205 mm.

Originality/value

The dynamic analysis method presented in this paper is found to be applicable to rod structures with large obstacles and improved the stability of the robot at high altitude. Simulations and experiments are also conducted for performance evaluation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 11000