Search results

1 – 8 of 8
Article
Publication date: 30 May 2019

Fengyu Xu and Quansheng Jiang

Field robots can surmount or avoid some obstacles when operating on rough ground. However, cable-climbing robots can only surmount obstacles because their moving path is…

Abstract

Purpose

Field robots can surmount or avoid some obstacles when operating on rough ground. However, cable-climbing robots can only surmount obstacles because their moving path is completely restricted along the cables. This paper aims to analyse the dynamic obstacle-surmounting models for the driving and driven wheels of the climbing mechanism, and design a mechanical structure for a bilateral-wheeled cable-climbing robot to improve the obstacle crossing capability.

Design/methodology/approach

A mechanical structure of the bilateral-wheeled cable-climbing robot is designed in this paper. Then, the kinematic and dynamic obstacle-surmounting of the driven and driving wheels are investigated through static-dynamic analysis and Lagrangian mechanical analysis, respectively. The climbing and obstacle-surmounting experiments are carried out to improve the obstacle crossing capability. The required motion curve, speed and driving moment of the robot during obstacle-surmounting are generated from the experiments results.

Findings

The presented method offers a solution for dynamic obstacle-surmounting analysis of a bilateral-wheeled cable-climbing robot. The simulation, laboratory testing and field experimental results prove that the climbing capability of the robot is near-constant on cables with diameters between 60 and 205 mm.

Originality/value

The dynamic analysis method presented in this paper is found to be applicable to rod structures with large obstacles and improved the stability of the robot at high altitude. Simulations and experiments are also conducted for performance evaluation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 January 2022

Jie Li, Chenyang Yin, Yunde Shi, Suya Dai and Xingsong Wang

Periodic inspection of bridge cables is essential, and cable-climbing robots can replace human workers to perform risky tasks and improve inspection efficiency. However, cable…

Abstract

Purpose

Periodic inspection of bridge cables is essential, and cable-climbing robots can replace human workers to perform risky tasks and improve inspection efficiency. However, cable inspection robots often fail to surmount large obstacles and cable clamps. The purpose of this paper is to develop a practical cable inspection robot with stronger obstacle-surmounting performance and circumferential rotation capability.

Design/methodology/approa/ch

A cable inspection robot with novel elastic suspension mechanisms and circumferential rotation mechanisms is designed and proposed in this study. The supporting force and spring deformation of the elastic suspension are investigated and calculated. Dynamic analysis of obstacle surmounting and circumferential rotation is performed. Experiments are conducted on vertical and inclined cables to test the obstacle-surmounting performance and cable-clamp passing of the robot. The practicality of the robot is then verified in field tests.

Findings

With its elastic suspension mechanisms, the cable inspection robot can carry a 12.4 kg payload and stably climb a vertical cable. The maximum heights of obstacles surmounted by the driving wheels and the passive wheels of the robot are 15 mm and 13 mm, respectively. Equipped with circumferential rotation mechanisms, the robot can flexibly rotate and successfully pass cable clamps.

Originality/value

The novel elastic suspension mechanism and circumferential rotation mechanism improve the performance of the cable inspection robot and solve the problem of surmounting obstacles and cable clamps. Application of the robot can promote the automation of bridge cable inspection.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 5 August 2019

Huaping Liu and Yuan Yuan

348

Abstract

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 25 January 2018

Xiaolong Lu, Shiping Zhao, Xiaoyu Liu and Yishu Wang

The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external…

Abstract

Purpose

The purpose of this paper is to describe the design and development of “Pylon-Climber II”, a 5-DOF biped climbing robot (degree of freedom – DOF) for moving on the external surface of a tower and assisting the electricians to complete some maintenance tasks.

Design/methodology/approach

The paper introduces a pole-climbing robot, which consists of a 5-DOF mechanical arm and two novel grippers. The gripper is composed of a two-finger clamping module and a retractable L-shaped hook module. The robot is symmetrical in structure, and the rotary joint for connecting two arms is driven by a linear drive mechanism.

Findings

The developed prototype proved a new approach for the inspection and maintenance of the electricity pylon. The gripper can reliably grasp the angle bars with different specifications by using combined movement of the two-finger clamping module and the retractable L-shaped hook module and provide sufficient adhesion force for the Pylon-Climber II.

Practical implications

The clamping experiments of the gripper and the climbing experiments of the robot were carried out on a test tower composed of some angle bars with different specification.

Originality/value

This paper includes the design and development of a 5-DOF biped climbing robot for electricity pylon maintenance. The climbing robot can move on the external surface of the electric power tower through grasping the angle bar alternatively. The gripper that is composed of a two-finger gripping module and a retractable L-shaped hook module is very compact and can provide reliable adhesion force for the climbing robot.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 June 2021

Suyang Yu, Changlong Ye, Guanghong Tao, Jian Ding and Yinchao Wang

The rope-climbing robot that can cling to a rope for locomotion has been a popular piece of equipment for some overhead applications due to its high flexibility. In view of…

Abstract

Purpose

The rope-climbing robot that can cling to a rope for locomotion has been a popular piece of equipment for some overhead applications due to its high flexibility. In view of problems left by existing rope-climbing robots, this paper aims to propose a new-style rope-climbing robot named Finger-wheeled mechanism robot (FWMR)-II to improve their performance.

Design/methodology/approach

FWMR-II adopts a modular and link-type mechanical structure. With the finger-wheeled mechanism (FWM) module, the robot can achieve smooth and quick locomotion and good capability of obstacle-crossing on the rope and with the link module based on a spatial parallel mechanism, the robot adaptability for rope environments is improved further. The kinematic models that can present configurations of the FWM module and link module of the robot are established and for typical states of the obstacle-crossing process, the geometric definitions and constraints that can present the robot position relative to the rope are established. The simulation is performed with the optimization calculating method to obtain the robot adaptability for rope environments and the experiment is also conducted with the developed prototype to verify the robot performance.

Findings

From the simulation results, the adaptability for rope environments of FWMR-II are obtained and the advantage of FWMR-II compared with FWMR-I is also proved. The experiment results give a further verification for the robot design and analysis work.

Practical implications

The robot proposed in this study can be used for inspection of power transmission lines, inspection and delivery in mine and some other overhead applications.

Originality/value

An ingenious modular link-type robot is proposed to improve existing rope-climbing robots and the method established in this study is worthy of reference for obstacle-crossing analysis of other rope-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2017

Xiaolong Lu, Shiping Zhao, Deping Yu and Xiaoyu Liu

The purpose of this paper is to describe the design and development of “Pylon-Climber”, a pole climbing robot (PCR) for climbing along the corner columns of electricity pylon and…

Abstract

Purpose

The purpose of this paper is to describe the design and development of “Pylon-Climber”, a pole climbing robot (PCR) for climbing along the corner columns of electricity pylon and assisting the electricians to complete maintenance tasks.

Design/methodology/approach

Introduces a PCR that is composed of a simple climbing mechanism and two novel grippers. The gripper consists of two angle-fixed V-blocks, and the size of V-block is variable. The clamping method of the angle bar meets the requirement of the force closure theorem. The whole design adopts symmetrical design ideas.

Findings

The developed prototype proved possibility of application of PCRs for inspection and maintenance of pylon. The novel gripper can provide enough adhesion force for climbing robot.

Practical implications

The robot is successfully tested on a test tower composed of different specification steel angles, oblique ledges and overlapping steel struts.

Originality/value

Design and development of a novel climbing assistive robot for pylon maintenance. The robot is able to climb along the column of electricity pylon and pass all obstacles. The gripper can reliably grasp the angle bar with different specification and overlapping steel struts from multiple directions.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 June 2007

Jun Luo, Shaorong Xie, Zhenbang Gong and Tiansheng Lu

In order to replace the conventional human maintenance of cable‐stayed bridges, a robot is designed and constructed for tasks such as cleaning, painting and rust‐detecting.

1055

Abstract

Purpose

In order to replace the conventional human maintenance of cable‐stayed bridges, a robot is designed and constructed for tasks such as cleaning, painting and rust‐detecting.

Design/methodology/approach

Adopting a modular approach, two kinds of climbing mechanisms, plus a painting mechanism and a rust‐detecting method are designed.

Findings

A robot that can climb and maintain the cables of cable‐stayed bridges has been designed and constructed. It has been proved by experiment that the robot can overcome many disadvantages of conventional human bridge‐maintenance, and drastically improve efficiency, cost, and safety.

Research limitations/implications

The robot is of industrial size, but a new mechanism requiring less installing time will be designed for the future.

Practical implications

The robot has been applied to cables of the Nanpu Bridge and Xupu Bridge in Shanghai. More than 80 cable‐stayed bridges and six suspension bridges have been built or are being constructed across large rivers in China alone. This gives an enormous potential market.

Originality/value

The cable maintenance robot developed in this paper is the world's first special robot for the cables of cable‐stayed bridges.

Details

Industrial Robot: An International Journal, vol. 34 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 March 2021

Sara Wilkinson, Marc Carmichael and Richardo Khonasty

The UN forecast of a 3-degree Celsius global temperature increase by 2,100 will exacerbate excessive heat. Population growth, urban densification, climate change and global…

Abstract

Purpose

The UN forecast of a 3-degree Celsius global temperature increase by 2,100 will exacerbate excessive heat. Population growth, urban densification, climate change and global warming contribute to heat waves, which are more intense in high-density environments. With urbanisation, vegetation is replaced by impervious materials which contribute to the urban heat island effect. Concurrently, adverse health outcomes and heat- related deaths are increasing, and heat stress affects labour productivity. More green infrastructure, such as green walls, is needed to mitigate these effects; however maintenance costs, OH&S issues and perceptions of fire risk inhibit take up. What if these barriers could be overcome by a green Wallbot? This research examines the feasibility of integrating smart technology in the form of a Wallbot.

Design/methodology/approach

The research design comprised two workshops with key stakeholders; comprising green wall designers and installers, green wall maintenance teams, project managers and building owners with green wall installations, horticulture scientists, designers and mechatronics engineers. The aim was to gain a deeper understanding of the issues affecting maintenance of green walls on different building types in New South Wales Australia to inform the design of a prototype robot to maintain green walls.

Findings

The Wallbot has great potential to overcome the perceived barriers associated with maintaining green walls and also fire risk and detection. If these barriers are addressed, other locations, such as the sides of motorways or rail corridors, could be used for more green wall installations thereby increasing mitigation of UHI. This innovation would be a welcome addition to smart building technology and property maintenance.

Research limitations/implications

This is a pilot study, and the sample of stakeholders attending the workshops was small, though experienced. The range of green walls is varied, and it was decided to focus initially on a specific type of green wall design for the prototype Wallbot. Therefore other types and sizes of green walls may suit other specifications of Wallbot design.

Practical implications

To date, no robot exists that maintains green walls, and this innovative research developed a prototype for trialling maintenance and inspection.

Originality/value

To date, no robot exists that maintains green walls. No study to date has assessed stakeholder perceptions and developed prototype Wallbot technology.

Details

Property Management, vol. 39 no. 4
Type: Research Article
ISSN: 0263-7472

Keywords

1 – 8 of 8