Search results

1 – 10 of 58
Article
Publication date: 1 July 2024

Ruipan Lu, Zhangqi Liu, Xiping Liu, Baoyu Sun and Jiangwei Liang

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims…

Abstract

Purpose

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims to propose an intensifying-flux hybrid excitation PM machine. It is possible to adjust the air gap magnetic field by adjusting the field current in the excitation winding, thereby increasing the torque output capability and speed range of the machine.

Design/methodology/approach

First, a novel intensifying-flux hybrid excited permanent magnet synchronous machine (IF-HEPMSM) is proposed on the basis of intensifying-flux permanent magnet synchronous machine (IF-PMSM) and an equivalent magnetic circuit model is established. Second, the tooth width and yoke thickness of the machine stator are optimized to ensure the overload capacity of the machine while effectively improving the wide flux regulation range. Furthermore, the electromagnetic characteristics of the IF-HEPMSM are investigated and compared with the IF-PMSM and conventional permanent magnet synchronous machine (PMSM) by using finite element simulations.

Findings

The id of IF-HEPMSM and IF-PMSM is greater than zero low-speed magnetizing current. And the flux-weakening current of the IF-HEPMSM is 18% and 3% smaller than of the conventional PMSM and IF-PMSM.

Practical implications

Aiming at the problems of IF-PMSM applied to electric vehicles, this paper proposes an IF-HEPMSM. The air gap magnetic field is adjusted by controlling the current of the excitation winding to improve the reliability of the machine. Therefore, the IF-HEPMSM combines the advantages of high-power density and high efficiency of the PMSM and the controllable magnetic field of the electro-excitation machine, which is of great engineering value when applied in the field of electric vehicles.

Originality/value

The proposed IF-HEPMSM offers better flux regulation capability with electromagnetic characteristics analysis and maps of dq-axis current as compared to IF-PMSM and conventional PMSM. Moreover, the improvement of the torque can make up for the shortcomings of the insufficient torque output capability of the IF-PMSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 September 2024

Fawzy Alsharif and Cetin Kurnaz

This paper aims to present an innovative reconfigurable series-fed microstrip antenna using radiofrequency positive intrinsic negative (RF PIN) diodes for cognitive S-band and…

Abstract

Purpose

This paper aims to present an innovative reconfigurable series-fed microstrip antenna using radiofrequency positive intrinsic negative (RF PIN) diodes for cognitive S-band and C-band satellite communications. The antenna can dynamically reconfigure its frequency, polarization and radiation pattern to meet diverse application needs.

Design/methodology/approach

The design involves a reconfigurable four-element microstrip antenna using FR4 substrate and copper patches. RF PIN diodes enable dynamic frequency, polarization and radiation pattern reconfiguration. Simulations and optimizations are performed using CST and HFSS, using techniques like the Nelder-Mead algorithm, particle swarm optimization, covariance matrix adaptation and trust region framework. An antenna prototype is also fabricated to validate the simulations.

Findings

The proposed antenna demonstrates significant reconfigurability: it switches between S-band (2.45 GHz, 2.52 GHz) and C-band (5.55 GHz, 5.59 GHz) with bandwidths of 120 MHz and 550 MHz, respectively. It transitions between circular and linear polarization in the S-band and modifies the radiation pattern by 45 degrees, providing an alternative radiation direction in the C-band. The antenna achieves a maximum gain of 5.95 dBi at 2.52 GHz and 93% efficiency at 5.55 GHz. Simulated results closely match those from the fabricated prototype, confirming the design’s validity.

Originality/value

The innovative use of RF PIN diodes enables comprehensive reconfigurability in frequency, polarization and radiation patterns within a single microstrip antenna, meeting the demands of S-band and C-band satellite communications. This study demonstrates superior performance, significant gains and efficiencies across various reconfiguration modes, validated by rigorous simulation and practical fabrication. The simple structural design further distinguishes this study from others in the field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 August 2024

Siwei Bi, Jinkui Pi, Haohan Chen, Yannan Zhou, Ruiqi Liu, Yuanyuan Chen, Qianli Che, Wei Li, Jun Gu and Yi Zhang

Three-dimensional (3D) food printing is an innovative technology used to customize food products through the integration of digital technology and food ingredients. The purpose of…

41

Abstract

Purpose

Three-dimensional (3D) food printing is an innovative technology used to customize food products through the integration of digital technology and food ingredients. The purpose of this study is to assess the current state of research in the field of 3D food printing, identify trending topics and identify promising future research directions.

Design/methodology/approach

This bibliometric review systematically evaluates the field of 3D food printing using data from published literature in the Web of Science database. After reference screening, 812 articles were included in the analysis.

Findings

The result reveals that research in 3D food printing primarily focuses on the optimization and characterization of mechanical and rheological properties of food inks and that post-printing processing, such as laser treatment, has emerged recently as an important consideration in 3D food printing. However, extant works lack animal and human studies that demonstrate the functionality of 3D-printed food.

Originality/value

This sophisticated bibliometric analysis uncovered the most studied current research topics and the leading figures in the area of 3D food printing, providing promising future research directions.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2024

Haoyu Huang, Julin Shan, S.H. Lo, Fei Yu, Jie Cao, Jihai Chang and Z.Q. Guan

In this study, we propose a tetrahedral mesh generation and adaptive refinement method for multi-chamber, multi-facet, multiscale and surface-solid mesh coupling with extremely…

Abstract

Purpose

In this study, we propose a tetrahedral mesh generation and adaptive refinement method for multi-chamber, multi-facet, multiscale and surface-solid mesh coupling with extremely thin layers, solving the two challenges of mesh generation and refinement in current electromagnetic simulation models.

Design/methodology/approach

Utilizing innovative topology transformation techniques, high-precision intersection judgment algorithms and highly reliable boundary recovery algorithms to reduce the number of Steiner locking points. The feasible space for the reposition of Steiner points is determined by using the linear programming. During mesh refinement, an edge-split method based on geometric center and boundary facets node size is devised. Solving the problem of difficult insertion of nodes in narrow geometric spaces, capable of filtering the longest and boundary edges of tetrahedrons, refining the mesh layer by layer through multiple iterations, and achieving collaborative optimization of surface and tetrahedral mesh. Simultaneously, utilizing a surface-facet preserving mesh topology optimization algorithm to improve the fit degree between the mesh and geometry.

Findings

Initial mesh generation for electromagnetic models, compared to commercial software, the method proposed in this paper has a higher pass rate and better mesh quality. For the adaptive refinement performance of high-frequency computing, this method can generate an average of 50% fewer meshes compared to commercial software while meeting simulation accuracy.

Originality/value

This paper proposes a complete set of mesh generation and adaptive refinement theories and methods designed for the structural characteristics of electromagnetic simulation models, which meet the needs of real-world industrial applications.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2024

He Cheng, Fandi Lin, Jing Wu and Tong Zhang

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Abstract

Purpose

The purpose of this paper is to introduce and analyze a dual-side-permanent-magnet Halbach array vernier (DSPMHV) machine and to propose methods for achieving high torque density.

Design/methodology/approach

Flux harmonics and torque characteristics are analyzed by using finite element analysis. First, a suitable pole-slot combination is selected by comparison. Second, field modulation processes of DSPMHV machine are analyzed to identify the reason for high torque density. And it is compared with dual-side-PM (DSPM) machine to analyze flux harmonic and verify the flux concentrating effect of the Halbach array.

Findings

The permanent magnet (PM) field of the DSPM machine is approximately equal to the superposition of stator-PM field and rotor-PM field, which is the reason for high torque density. And the Halbach array can reduce flux leakage and increase the amplitude of main flux harmonics, then further improves torque. Improvement of torque can be achieved by choosing right pole-slot combination, adopting DSPM machine structure, reducing flux leakage and adopting field modulation principle.

Originality/value

The DSPMHV machine with split-tooth is proposed in this paper by combining the Halbach array with DSPM structure. This paper analyzes the bidirectional field modulation process, the reason for high torque density of the DSPM machine is obtained. Comparison with the DSPM machine verifies the flux concentrating effect of Halbach array. To alleviate the magnetic saturation in part of stator teeth, this paper proposes an improved DSPMHV machine with shaped auxiliary magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 July 2023

Anurag Tiwari and Priyabrata Mohapatra

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach…

Abstract

Purpose

The purpose of this study is to formulate a new class of vehicle routing problem with an objective to minimise the total cost of raw material collection and derive a new approach to solve optimization problems. This study can help to select the optimum number of suppliers based on cost.

Design/methodology/approach

To model the raw material vehicle routing problem, a mixed integer linear programming (MILP) problem is formulated. An interesting phenomenon added to the proposed problem is that there is no compulsion to visit all suppliers. To guarantee the demand of semiconductor industry, all visited suppliers should reach a given raw material capacity requirement. To solve the proposed model, the authors developed a novel hybrid approach that is a combination of block and edge recombination approaches. To avoid bias, the authors compare the results of the proposed methodology with other known approaches, such as genetic algorithms (GAs) and ant colony optimisation (ACO).

Findings

The findings indicate that the proposed model can be useful in industries, where multiple suppliers are used. The proposed hybrid approach provides a better sequence of suppliers compared to other heuristic techniques.

Research limitations/implications

The data used in the proposed model is generated based on previous literature. The problem derives from the assumption that semiconductor industries use a variety of raw materials.

Practical implications

This study provides a new model and approach that can help practitioners and policymakers select suppliers based on their logistics costs.

Originality/value

This study provides two important contributions in the context of the supply chain. First, it provides a new variant of the vehicle routing problem in consideration of raw material collection; and second, it provides a new approach to solving optimisation problems.

Article
Publication date: 22 August 2024

Binghai Zhou and Mingda Wen

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the…

Abstract

Purpose

Owing to the finite nature of the boundary of the line (BOL), the conventional method, involving the strong matching of single-variety parts with storage locations at the periphery of the line, proves insufficient for mixed-model assembly lines (MMAL). Consequently, this paper aims to introduce a material distribution scheduling problem considering the shared storage area (MDSPSSA). To address the inherent trade-off requirement of achieving both just-in-time efficiency and energy savings, a mathematical model is developed with the bi-objectives of minimizing line-side inventory and energy consumption.

Design/methodology/approach

A nondominated and multipopulation multiobjective grasshopper optimization algorithm (NM-MOGOA) is proposed to address the medium-to-large-scale problem associated with MDSPSSA. This algorithm combines elements from the grasshopper optimization algorithm and the nondominated sorting genetic algorithm-II. The multipopulation and coevolutionary strategy, chaotic mapping and two further optimization operators are used to enhance the overall solution quality.

Findings

Finally, the algorithm performance is evaluated by comparing NM-MOGOA with multi-objective grey wolf optimizer, multiobjective equilibrium optimizer and multi-objective atomic orbital search. The experimental findings substantiate the efficacy of NM-MOGOA, demonstrating its promise as a robust solution when confronted with the challenges posed by the MDSPSSA in MMALs.

Originality/value

The material distribution system devised in this paper takes into account the establishment of shared material storage areas between adjacent workstations. It permits the undifferentiated storage of various part types in fixed BOL areas. Concurrently, the innovative NM-MOGOA algorithm serves as the core of the system, supporting the formulation of scheduling plans.

Content available
Book part
Publication date: 12 September 2024

Abstract

Details

Smart Cities and Circular Economy
Type: Book
ISBN: 978-1-83797-958-5

Article
Publication date: 27 July 2023

Ying Lu, Yunxuan Deng and Shuqi Sun

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian…

Abstract

Purpose

Metro stations have become a crucial aspect of urban rail transportation, integrating facilities, equipment and pedestrians. Impractical physical layout designs and pedestrian psychology impact the effectiveness of an evacuation during a metro fire. Prior research on emergency evacuation has overlooked the complexity of metro stations and failed to adequately consider the physical heterogeneity of stations and pedestrian psychology. Therefore, this study aims to develop a comprehensive evacuation optimization strategy for metro stations by applying the concept of design for safety (DFS) to an emergency evacuation. This approach offers novel insights into the management of complex systems in metro stations during emergencies.

Design/methodology/approach

Physical and social factors affecting evacuations are identified. Moreover, the social force model (SFM) is modified by combining the fire dynamics model (FDM) and considering pedestrians' impatience and panic psychology. Based on the Nanjing South Metro Station, a multiagent-based simulation (MABS) model is developed. Finally, based on DFS, optimization strategies for metro stations are suggested.

Findings

The most effective evacuation occurs when the width of the stairs is 3 meters and the transfer corridor is 14 meters. Additionally, a luggage disposal area should be set up. The exit strategy of the fewest evacuees is better than the nearest-exit strategy, and the staff in the metro station should guide pedestrians correctly.

Originality/value

Previous studies rarely consider metro stations as sociotechnical systems or apply DFS to proactively reduce evacuation risks. This study provides a new perspective on the evacuation framework of metro stations, which can guide the designers and managers of metro stations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 September 2024

Sérgio B Gonçalves, Pedro Dantas, Francisco Guedes de Melo, João Gouveia, José Guimarães Consciência, Jorge Martins and Miguel Tavares da Silva

Arthroscopic osteochondroplasty is a minimally invasive procedure that has been used to treat femoroacetabular impingement syndrome, leading to significant improvements in…

Abstract

Purpose

Arthroscopic osteochondroplasty is a minimally invasive procedure that has been used to treat femoroacetabular impingement syndrome, leading to significant improvements in patients’ clinical outcomes and quality of life. However, some studies suggest that inadequate bone resection can substantially alter hip biomechanics. These modifications may generate different contact profiles and higher contact forces, increasing the risk of developing premature joint degeneration. To improve control over bone resection and biomechanical outcomes during arthroscopic osteochondroplasty surgery, this study aims to present a novel system for measuring femoroacetabular contact forces.

Design/methodology/approach

Following a structured design process for the development of medical devices, the steps required for its production using additive manufacturing with material extrusion and easily accessible sensors are described. The system comprises two main devices, one for measuring femoroacetabular contact forces and the other for quantifying the force applied by the assistant surgeon during lower limb manipulation. The hip device was designed for use within an arthroscopic environment, eliminating the need for additional portals.

Findings

To evaluate its performance, the system was first tested in a laboratory setup and later under in-service conditions. The 3D printing parameters were tuned to ensure the watertighness of the device and sustain the intraoperative fluid pressures. The final prototype allowed for the controlled measurement of the hip contact forces in real-time.

Originality/value

Using additive manufacturing and readily available sensors, the present work presents the first device to quantify joint contact forces during arthroscopic surgeries, serving as an additional tool to support the surgeon’s decision-making process regarding bone resection.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 58