Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1785

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 30 July 2020

Alaa Tharwat

Classification techniques have been applied to many applications in various fields of sciences. There are several ways of evaluating classification algorithms. The analysis of…

38251

Abstract

Classification techniques have been applied to many applications in various fields of sciences. There are several ways of evaluating classification algorithms. The analysis of such metrics and its significance must be interpreted correctly for evaluating different learning algorithms. Most of these measures are scalar metrics and some of them are graphical methods. This paper introduces a detailed overview of the classification assessment measures with the aim of providing the basics of these measures and to show how it works to serve as a comprehensive source for researchers who are interested in this field. This overview starts by highlighting the definition of the confusion matrix in binary and multi-class classification problems. Many classification measures are also explained in details, and the influence of balanced and imbalanced data on each metric is presented. An illustrative example is introduced to show (1) how to calculate these measures in binary and multi-class classification problems, and (2) the robustness of some measures against balanced and imbalanced data. Moreover, some graphical measures such as Receiver operating characteristics (ROC), Precision-Recall, and Detection error trade-off (DET) curves are presented with details. Additionally, in a step-by-step approach, different numerical examples are demonstrated to explain the preprocessing steps of plotting ROC, PR, and DET curves.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 8 August 2019

Johann Wilhelm and Werner Renhart

The purpose of this paper is to investigate an alternative to established hysteresis models.

3651

Abstract

Purpose

The purpose of this paper is to investigate an alternative to established hysteresis models.

Design/methodology/approach

Different mathematical representations of the magnetic hysteresis are compared and some differences are briefly discussed. After this, the application of the T(x) function is presented and an inductor model is developed. Implementation details of the used transient circuit simulator code are further discussed. From real measurement results, parameters for the model are extracted. The results of the final simulation are finally discussed and compared to measurements.

Findings

The T(x) function possesses a fast mathematical formulation with very good accuracy. It is shown that this formulation is very well suited for an implementation in transient circuit simulator codes. Simulation results using the developed model are in very good agreement with measurements.

Research limitations/implications

For the purpose of this paper, only soft magnetic materials were considered. However, literature suggests, that the T(x) function can be extended to hard magnetic materials. Investigations on this topic are considered as future work.

Originality/value

While the mathematical background of the T(x) function is very well presented in the referenced papers, the application in a model of a real device is not very well discussed yet. The presented paper is directly applicable to typical problems in the field of power electronics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 3 December 2020

Peiqing Li, Huile Wang, Zixiao Xing, Kanglong Ye and Qipeng Li

The operation state of lithium-ion battery for vehicle is unknown and the remaining life is uncertain. In order to improve the performance of battery state prediction, in this…

1962

Abstract

Purpose

The operation state of lithium-ion battery for vehicle is unknown and the remaining life is uncertain. In order to improve the performance of battery state prediction, in this paper, a joint estimation method of state of charge (SOC) and state of health (SOH) for lithium-ion batteries based on multi-scale theory is designed.

Design/methodology/approach

In this paper, a joint estimation method of SOC and SOH for lithium-ion batteries based on multi-scale theory is designed. The venin equivalent circuit model and fast static calibration method are used to fit the relationship between open-circuit voltage and SOC, and the resistance and capacitance parameters in the model are identified based on exponential fitting method. A battery capacity model for SOH estimation is established. A multi-time scale EKF filtering algorithm is used to estimate the SOC and SOH of lithium-ion batteries.

Findings

The SOC and SOH changes in dynamic operation of lithium-ion batteries are accurately predicted so that batteries can be recycled more effectively in the whole vehicle process.

Originality/value

A joint estimation method of SOC and SOH for lithium-ion batteries based on multi-scale theory is accurately predicted and can be recycled more effectively in the whole vehicle process.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 8 April 2020

Sezer Kahyaoglu Bozkus, Hakan Kahyaoglu and Atahirou Mahamane Mahamane Lawali

The purpose of this study aims to analyze the dynamic behavior of the relationship between atmospheric carbon emissions and the Organisation for Economic Co-operation and…

1630

Abstract

Purpose

The purpose of this study aims to analyze the dynamic behavior of the relationship between atmospheric carbon emissions and the Organisation for Economic Co-operation and Development (OECD) industrial production index (IPI) in the short and long term by applying multifractal techniques.

Design/methodology/approach

Multifractal de-trended cross-correlation technique is used for this analysis based on the relevant literature. In addition, it is the most widely used approach to estimate multifractality because it generates robust empirical results against non-stationarities in the time series.

Findings

It is revealed that industrial production causes long and short term environmental costs. The OECD IPI and atmospheric carbon emissions were found to have a strong correlation between the time domain. However, this relationship does not mostly take into account the frequency-based correlations with the tail effects caused by shocks that are effective on the economy. In this study, the long-term dependence of the relationship between the OECD IPI and atmospheric carbon emissions differs from the correlation obtained by linear methods, as the analysis is based on the frequency. The major finding is that the Hurst coefficient is in the range 0.40-0.75 indicating.

Research limitations/implications

In this study, the local singular behavior of the time-series is analyzed to test for the multifractality characteristics of the series. In this context, the scaling exponents and the singularity spectrum are obtained to determine the origins of this multifractality. The multifractal time series are defined as the set of points with a given singularity exponent a where this exponent a is illustrated as a fractal with fractal dimension f(α). Therefore, the multifractality term indicates the existence of fluctuations, which are non-uniform and more importantly, their relative frequencies are also scale-dependent.

Practical implications

The results provide information based on the fluctuation in IPI, which determines the main conjuncture of the economy. An optimal strategy for shaping the consequences of climate change resulting from industrial production activities will not only need to be quite comprehensive and global in scale but also policies will need to be applicable to the national and local conditions of the given nation and adaptable to the needs of the country.

Social implications

The results provide information for the analysis of the environmental cost of climate change depending on the magnitude of the impact on the total supply. In addition to environmental problems, climate change leads to economic problems, and hence, policy instruments are introduced to fight against the adverse effects of it.

Originality/value

This study may be of practical and technical importance in regional climate change forecasting, extreme carbon emission regulations and industrial production resource management in the world economy. Hence, the major contribution of this study is to introduce an approach to sustainability for the analysis of the environmental cost of growth in the supply side economy.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 1 May 2023

Ai Yibo, Zhang Yuanyuan, Cui Hao and Zhang Weidong

This study aims to ensure the operation safety of high speed trains, it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material…

Abstract

Purpose

This study aims to ensure the operation safety of high speed trains, it is necessary to carry out nondestructive monitoring of the tensile damage of the gearbox housing material in rail time, yet the traditional tests of mechanical property can hardly meet this requirement.

Design/methodology/approach

In this study the acoustic emission (AE) technology is applied in the tensile tests of the gearbox housing material of an high-speed rail (HSR) train, during which the acoustic signatures are acquired for parameter analysis. Afterward, the support vector machine (SVM) classifier is introduced to identify and classify the characteristic parameters extracted, on which basis the SVM is improved and the weighted support vector machine (WSVM) method is applied to effectively reduce the misidentification of the SVM classifier. Through the study of the law of relations between the characteristic values and the tensile life, a degradation model of the gearbox housing material amid tensile is built.

Findings

The results show that the growth rate of the logarithmic hit count of AE signals and that of logarithmic amplitude can well characterize the stage of the material tensile process, and the WSVM method can improve the classification accuracy of the imbalanced data to above 94%. The degradation model built can identify the damage occurred to the HSR gearbox housing material amid the tensile process and predict the service life remains.

Originality/value

The results of this study provide new concepts for the life prediction of tensile samples, and more further tests should be conducted to verify the conclusion of this research.

Open Access
Article
Publication date: 11 February 2019

Peter Burggraef, Johannes Wagner, Matthias Dannapfel and Sebastian Patrick Vierschilling

The purpose of this paper is to investigate the benefit of pre-emptive disruption management measures for assembly systems towards the target dimension adherence to delivery times.

2511

Abstract

Purpose

The purpose of this paper is to investigate the benefit of pre-emptive disruption management measures for assembly systems towards the target dimension adherence to delivery times.

Design/methodology/approach

The research was conducted by creating simulation models for typical assembly systems and measuring its varying throughput times due to changes in their disruption profiles. Due to the variability of assembly systems, key influence factors were investigated and used as a foundation for the simulation setup. Additionally, a disruption profile for each simulated process was developed, using the established disruption categories material, information and capacity. The categories are described by statistical distributions, defining the interval between the disruptions and the disruption duration. By a statistical experiment plan, the effect of a reduced disruption potential onto the throughput time was investigated.

Findings

Pre-emptive disruption management is beneficial, but its benefit depends on the operated assembly system and its organisation form, such as line or group assembly. Measures have on average a higher beneficial impact on group assemblies than on line assemblies. Furthermore, it was proven that the benefit, in form of better adherence to delivery times, per reduced disruption potential has a declining character and approximates a distinct maximum.

Originality/value

Characterising the benefit of pre-emptive disruption management measures enables managers to use this concept in their daily production to minimise overall costs. Despite the hardly predictable influence of pre-emptive disruption measures, these research results can be implemented into a heuristic for efficiently choosing these measures.

Details

Journal of Modelling in Management, vol. 14 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 13 June 2023

Xiaogen Liu, Shuang Qi, Detian Wan and Dezhi Zheng

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Abstract

Purpose

This paper aims to analyze the bearing characteristics of the high speed train window glass under aerodynamic load effects.

Design/methodology/approach

In order to obtain the dynamic strain response of passenger compartment window glass during high-speed train crossing the tunnel, taking the passenger compartment window glass of the CRH3 high speed train on Wuhan–Guangzhou High Speed Railway as the research object, this study tests the strain dynamic response and maximum principal stress of the high speed train passing through the tunnel entrance and exit, the tunnel and tunnel groups as well as trains meeting in the tunnel at an average speed of 300 km·h-1.

Findings

The results show that while crossing the tunnel, the passenger compartment window glass of high speed train is subjected to the alternating action of positive and negative air pressures, which shows the typical mechanic characteristics of the alternating fatigue stress of positive-negative transient strain. The maximum principal stress of passenger compartment window glass for high speed train caused by tunnel aerodynamic effects does not exceed 5 MPa, and the maximum value occurs at the corresponding time of crossing the tunnel groups. The high speed train window glass bears medium and low strain rates under the action of tunnel aerodynamic effects, while the maximum strain rate occurs at the meeting moment when the window glass meets the train head approaching from the opposite side in the tunnel. The shear modulus of laminated glass PVB film that makes up high speed train window glass is sensitive to the temperature and action time. The dynamically equivalent thickness and stiffness of the laminated glass and the dynamic bearing capacity of the window glass decrease with the increase of the action time under tunnel aerodynamic pressure. Thus, the influence of the loading action time and fatigue under tunnel aerodynamic effects on the glass strength should be considered in the design for the bearing performance of high speed train window glass.

Originality/value

The research results provide data support for the analysis of mechanical characteristics, damage mechanism, strength design and structural optimization of high speed train glass.

Open Access
Article
Publication date: 21 June 2019

Yang Li, Zhixiang Xie, Yaochen Qin and Zhicheng Zheng

This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The current…

1957

Abstract

Purpose

This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The current study aimed to evaluate the role of a series of government-led environmental control projects in restoring the ecological environment of the Yellow River basin.

Design/methodology/approach

This paper uses unary linear regression, Mann–Kendall and wavelet analyses to study the spatial–temporal variations of vegetation and the response to climate changes in the Yellow River, China.

Findings

The results showed that for the past 17 years, not only the mean annual increase rate of the Normalized Difference Vegetation Index (NDVI) was 0.0059/a, but the spatial heterogeneity also yields significant results. The vegetation growth in the southeastern region was significantly better than that in the northwestern region. The variation period of the NDVI in the study area significantly shortened, and the most obvious oscillation period was half a year, with two peaks in one year. In addition, there are positive and negative effects of human activities on the change of vegetation cover of the Loess Plateau. The project of transforming cultivated land to forest and grassland promotes the increase of vegetation cover of the Loess plateau. Unfortunately, the regional urbanization and industrialization proliferated, and the overloading of grazing, deforestation, over-reclamation, and the exploitation and development of the energy area in the grassland region led to the reduction of the NDVI. Fortunately, the positive effects outweigh the negative ones.

Originality/value

This paper provides a comprehensive insight to analysis of the vegetation change and the responses of vegetation to climate change, with special reference to make the planning policy of ecological restoration. This paper argues that ecological restoration should be strengthened in areas with annual precipitation less than 450 mm.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 10 August 2018

Yishou Wang, Zhibin Han, Tian Gao and Xinlin Qing

The purpose of this study is to develop a cylindrical capacitive sensor that has the advantages of high resolution, small size and designability and can be easily installed on…

1992

Abstract

Purpose

The purpose of this study is to develop a cylindrical capacitive sensor that has the advantages of high resolution, small size and designability and can be easily installed on lubricant pipeline to monitor lubricant oil debris.

Design/methodology/approach

A theoretical model of the cylindrical capacitive sensor is presented to analyze several parameters’ effectiveness on the performance of sensor. Numerical simulations are then conducted to determine the optimal parameters for preliminary experiments. Experiments are finally carried out to demonstrate the detectability of developed capacitive sensors.

Findings

It is clear from experimental results that the developed capacitive sensor can monitor the debris in lubricant oil well, and the capacitance values increase almost linearly when the number and size of debris increase.

Research limitations/implications

There is lot of further work to do to apply the presented method into the application. Especially, it is necessary to consider several factors’ influence on monitoring results. These factors include the flow rate of the lubricant oil, the temperature, the debris distribution and the vibration. Moreover, future work should consider the influence of the oil degradation to the capacitance change and other contaminations (e.g. water and dust).

Practical implications

This work conducts a feasibility study on application of capacitive sensing principle for detecting debris in aero engine lubricant oil.

Originality/value

The novelty of the presented capacitance sensor can be summarized into two aspects. One is that the sensor structure is simple and characterized by two coaxial cylinders as electrodes, while conventional capacitive sensors are composed of two parallel plates as electrodes. The other is that sensing mechanism and physical model of the presented sensor is verified and validated by the simulation and experiment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000