Search results

1 – 10 of 702
Article
Publication date: 14 November 2023

Khaled Hallak, Fulbert Baudoin, Virginie Griseri, Florian Bugarin, Stephane Segonds, Severine Le Roy and Gilbert Teyssedre

The purpose of this paper is to optimize and improve a bipolar charge transport (BCT) model used to simulate charge dynamics in insulating polymer materials, specifically…

Abstract

Purpose

The purpose of this paper is to optimize and improve a bipolar charge transport (BCT) model used to simulate charge dynamics in insulating polymer materials, specifically low-density polyethylene (LDPE).

Design/methodology/approach

An optimization algorithm is applied to optimize the BCT model by comparing the model outputs with experimental data obtained using two kinds of measurements: space charge distribution using the pulsed electroacoustic (PEA) method and current measurements in nonstationary conditions.

Findings

The study provides an optimal set of parameters that offers a good correlation between model outputs and several experiments conducted under varying applied fields. The study evaluates the quantity of charges remaining inside the dielectric even after 24 h of short circuit. Moreover, the effects of increasing the electric field on charge trapping and detrapping rates are addressed.

Research limitations/implications

This study only examined experiments with different applied electric fields, and thus the obtained parameters may not suit the experimental outputs if the experimental temperature varies. Further improvement may be achieved by introducing additional experiments or another source of measurements.

Originality/value

This work provides a unique set of optimal parameters that best match both current and charge density measurements for a BCT model in LDPE and demonstrates the use of trust region reflective algorithm for parameter optimization. The study also attempts to evaluate the equations used to describe charge trapping and detrapping phenomena, providing a deeper understanding of the physics behind the model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 7 December 2023

Alexander Mitterle

Within the last two decades, entrepreneurship education has become institutionalized in Germany. It is offered as a stand-alone program or as part of a business degree, combining…

Abstract

Within the last two decades, entrepreneurship education has become institutionalized in Germany. It is offered as a stand-alone program or as part of a business degree, combining academic knowledge, practical skills, and personal development to enhance the entrepreneurial success of university graduates. While entrepreneurship education has experienced similar growth worldwide, its emergence in Germany is closely tied to the country’s political and economic developments. The significance of entrepreneurship education for a thriving entrepreneurial ecosystem and contemporary economic policy has been instrumental in advancing its academic recognition. This chapter provides a historical analysis of the academization of entrepreneurship in Germany. It explores the recursive and often idiosyncratic processes involving state and financial institutions, companies, and universities that have created, respecified, and mutually reinforced a subdiscipline and field of study. Academic entrepreneurship knowledge successively not only became relevant for starting a business but also for employment within the entrepreneurial infrastructure and beyond. This chapter follows a chronological order, highlighting three key stages in the academization of entrepreneurship education. First, the academic, financial, and political roots (I) of entrepreneurship up until the 1970s. Second, it explores the transformation (II) of entrepreneurship into a viable policy alternative and the challenges faced in establishing complementary research and education in higher education institutions during the 1980s. Finally, it sketches the institutionalization (III) of entrepreneurship as a central driver of government economic policy, allowing for the late bloom of entrepreneurship education and research at universities around the turn of the millennium.

Details

How Universities Transform Occupations and Work in the 21st Century: The Academization of German and American Economies
Type: Book
ISBN: 978-1-83753-849-2

Keywords

Article
Publication date: 8 May 2023

Megita Ryanjani Tanuputri and Hu Bai

Determining vulnerability and resilience is necessary to develop sustainable agribusiness. The purpose of this study is to clarify and understand the current condition and…

Abstract

Purpose

Determining vulnerability and resilience is necessary to develop sustainable agribusiness. The purpose of this study is to clarify and understand the current condition and problems in the tea supply chain and to develop a framework on how to build a sustainable and resilient tea supply chain.

Design/methodology/approach

This study is a case study analysis which develops an integrated framework to build a resilient tea supply chain. It evaluates and extends the current knowledge of Javanese tea by applying business process analysis to understand the situation.

Findings

This paper develops an integrated and conceptual framework on how to build resilient supply chain by considering five broad factors: vulnerability analysis, assessment of assets, supply chain collaboration, control mechanism from government and outcome.

Research limitations/implications

The framework provides a conceptual view but limited to field surveys in Central Java Province. This study could increase the general understanding of tea supply chain in Indonesia and its major problems and challenges.

Practical implications

The framework also highlights different stakeholder's organizational constraints and issues, especially during the COVID-19 pandemic.

Originality/value

The business process analysis and conceptual framework offer an expanded and in-depth explanation on how organizations respond to the changing conditions, especially during the COVID-19 pandemic.

Details

The International Journal of Logistics Management, vol. 34 no. 6
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 27 April 2023

Pauline Charlotte Reinecke, Thomas Wrona, Nicolas Rückert and Kathrin Fischer

A large part of maritime container supply chain costs is generated by carriers in port hinterland logistics. Carriers which operate in the hinterland are under pressure to reduce…

Abstract

Purpose

A large part of maritime container supply chain costs is generated by carriers in port hinterland logistics. Carriers which operate in the hinterland are under pressure to reduce costs and increase profitability, and they face challenges of fierce price competition. This study aims to explore how collaboration is perceived and implemented by carriers in truck container logistics in the port hinterland as a way to tackle these issues.

Design/methodology/approach

This study adopts a qualitative multiple case study approach. Qualitative interviews with carriers in the port hinterland of Hamburg, Germany, were conducted and analyzed using grounded theory.

Findings

The study reveals two collaboration types in the hinterland, based on the different carriers' interpretation of market conditions as changeable or as given, driving their collaboration mindsets and strategic actions: The developer, who has a proactive collaboration mindset and practices strategic maneuvers toward changing poor market conditions through collaboration, and the adapter, who has a defensive collaboration mindset and perceives market conditions as given and constraining collaboration.

Research limitations/implications

The qualitative results will help researchers better understand how collaboration practices depend on the carriers' subjective interpretations and perceptions of the market.

Practical implications

Based on the findings, managers of carriers gain an understanding of the different types of actors in their market and the relevance of acknowledging these types. Consequently, they can design appropriate strategic measures toward collaboration.

Originality/value

The findings for the first time provide exploratory insights of carriers' mindsets.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 9
Type: Research Article
ISSN: 0960-0035

Keywords

Article
Publication date: 2 June 2023

Saeed Mahjouri, Rasoul Shabani and Martin Skote

The first touchdown moment of aircraft tyres on a runway is the critical phase where maximum of the vertical and horizontal ground loads is produced. Some valuable drop tests have…

Abstract

Purpose

The first touchdown moment of aircraft tyres on a runway is the critical phase where maximum of the vertical and horizontal ground loads is produced. Some valuable drop tests have been performed at Langley research centre to simulate the touchdown and the spin-up dynamics. However, a long impact basin and a huge power source to accelerate and decelerate the landing gear mechanism have been used. Based on a centrifugal mechanism, the purpose of this paper is to propose the conceptual design of a new experimental setup to simulate the spin-up dynamics.

Design/methodology/approach

A schematic view of the proposed mechanism is presented, and its components are introduced. Operating condition of the system and the test procedure are discussed in detail. Finally, tyre spin-up dynamics of Boeing 747 is considered as a case study, and operating condition of the system and the related test parameters are extracted.

Findings

It is shown that the aircraft tyre spin-up dynamics can be simulated in a limited laboratory space with low energy consumption. The proposed setup enables the approach velocity, sink rate and vertical ground load to be adjusted by low power actuators. Hence, the proposed mechanism can be used to simulate the tyre spin-up dynamics of different types of aircraft.

Research limitations/implications

It is important to note that more details of the setup, including the braking and actuating mechanisms together with their control procedures, should be clarified in practice. In addition, the curved path introduced as the runway will cause errors in the results. Hence, a compromise should be made between the tyre pressure, path curvature, the induced error and the cost of the experimental setup.

Practical implications

The proposed experimental setup could be constructed in a limited space and at a relatively low cost. Low power actuators are used in the proposed system. Hence, in addition to the performance tests, fatigue tests of the landing gear mechanism will also be possible.

Originality/value

Based on a centrifugal mechanism, the conceptual design of a new experimental setup is presented for simulating the tyre spin-up dynamics of aircraft. Considering that the drag load developed during tyre spin-up following initial touchdown is an important factor governing the design of the landing gear mechanism and aircraft structure, the authors hope this paper encourages engineers to continuously make efforts to increase the transparency of the touchdown process, enabling optimisation of landing gear design.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 September 2023

Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing and Guang-Zhu Zhang

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar…

Abstract

Purpose

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar cracks and reduce the water absorption of mortar after healing.

Design/methodology/approach

Bacillus pseudofirmus spores were immobilized with EP particles as self-healing agents. The effects of adding self-healing agents on the compressive strength of mortar specimens were observed. The ability of mortar specimens to heal cracks was evaluated using crack microscopic observation and water absorption experiments. The filler at the cracks was microscopically analyzed by scanning electron microscope and X-ray diffraction experiments.

Findings

First, the internal curing effect of EP promotes the hydration of cement in mortar, which generates more amount and denser crystal structure of Ca(OH)2 at mortar cracks and improves the self-healing ability of mortar. Second, the self-healing ability of mortar improves with the increase of self-healing agent admixture. Adding a self-healing agent of high admixture makes the planar undulation of calcite crystal accumulation at mortar cracks more significant. Finally, the initial crack widths that can be completely healed by adding EP and self-healing agents to the mortar are 200 µm and 600 µm, respectively.

Originality/value

The innovation points of this study are as follows. (1) The mechanism of the internal curing effect of EP particles on the self-healing ability of mortar cracks was revealed by crack microscopic observation tests and microscopic experiments. (2) The effect of different self-healing agent amounts on the self-healing ability of mortar cracks has been studied. (3) The effects of EP particles and self-healing agents on healing different initial widths were elucidated by crack microscopic observation tests.

Graphical abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 April 2024

Enes Mahmut Göker, Ahmet Fevzi Bozkurt and Kadir Erkan

The purpose of this paper is to introduce a novel cross (+) type yoke with hybrid electromagnets and new reluctance modeling to precisely calculate attraction force is given.

Abstract

Purpose

The purpose of this paper is to introduce a novel cross (+) type yoke with hybrid electromagnets and new reluctance modeling to precisely calculate attraction force is given.

Design/methodology/approach

The comparison of attraction force and torque analyses between the proposed formulation and the existing formulation in the literature is comparatively presented. For the correctness of the force and torque values calculated in the model created, the system was created in ANSYS Maxwell and its accuracy was proved by making analyses. The maglev carrier system is inherently unstable from the point of view of control engineering. For that, it needs an active controller to eliminate this instability. For the levitation of the carrier system, it is necessary to design a controller in three axes (z, α and β). I-PD controller was designed for the air gap control of the carrier system in three axes and the controller parameters were determined by the canonical method.

Findings

While the new formulation proposed in the modeling of the carrier system has a maximum error of 1.03%, the existing formula in the literature has an error of 16.83% in the levitation distance point.

Originality/value

A novel cross-type hybrid carrier system has been proposed in the literature. With the double integral used in modeling the system, it takes a long time to solve symbolically, and it is difficult to simulate dynamic behavior in control validation. To solve this problem, attraction force and inclination torque values are easily characterized by new formulation and besides the simulations are conducted easily. The experimental setup was manufactured and assembled, and the carrier system was successfully levitated, and reference tracking was performed without overshoot.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 May 2024

Suyun Liu, Hu Liu, Ningning Shao, Zhijun Dong, Rui Liu, Li Liu and Fuhui Wang

Polyaniline (PANI) has garnered attention for its potential applications in anticorrosion fields because of its unique properties. Satisfactory outcomes have been achieved when…

Abstract

Purpose

Polyaniline (PANI) has garnered attention for its potential applications in anticorrosion fields because of its unique properties. Satisfactory outcomes have been achieved when using PANI as a functional filler in organic coatings. More recently, research has extensively explored PANI-based organic coatings with self-healing properties. The purpose of this paper is to provide a summary of the active agents, methods and mechanisms involved in the self-healing of organic coatings.

Design/methodology/approach

This study uses specific doped acids and metal corrosion inhibitors as active and self-healing agents to modify PANI using the methods of oxidation polymerization, template synthesis, nanosheet carrier and nanocontainer loading methods. The anticorrosion performance of the coatings is evaluated using EIS, LEIS and salt spray tests.

Findings

Specific doped acids and metal corrosion inhibitors are used as active agents to modify PANI and confer self-healing properties to the coatings. The coatings’ active protection mechanism encompasses PANI’s own passivation ability, the adsorption of active agents and the creation of insoluble compounds or complexes.

Originality/value

This paper summarizes the active agents used to modify PANI, the procedures used for modification and the self-healing mechanism of the composite coatings. It also proposes future directions for developing PANI organic coatings with self-healing capabilities. The summaries and proposals presented may facilitate large-scale production of the PANI organic coatings, which exhibit outstanding anticorrosion competence and self-healing properties.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 June 2023

Liang Gong, Hang Dong, Xin Cheng, Zhenghui Ge and Liangchao Guo

The purpose of this study is to propose a new method for the end-to-end classification of steel surface defects.

Abstract

Purpose

The purpose of this study is to propose a new method for the end-to-end classification of steel surface defects.

Design/methodology/approach

This study proposes an AM-AoN-SNN algorithm, which combines an attention mechanism (AM) with an All-optical Neuron-based spiking neural network (AoN-SNN). The AM enhances network learning and extracts defective features, while the AoN-SNN predicts both the labels of the defects and the final labels of the images. Compared to the conventional Leaky-Integrated and Fire SNN, the AoN-SNN has improved the activation of neurons.

Findings

The experimental findings on Northeast University (NEU)-CLS demonstrate that the proposed neural network detection approach outperforms other methods. Furthermore, the network’s effectiveness was tested, and the results indicate that the proposed method can achieve high detection accuracy and strong anti-interference capabilities while maintaining a basic structure.

Originality/value

This study introduces a novel approach to classifying steel surface defects using a combination of a shallow AoN-SNN and a hybrid AM with different network architectures. The proposed method is the first study of SNN networks applied to this task.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 May 2023

Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…

Abstract

Purpose

The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.

Design/methodology/approach

Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.

Findings

The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.

Originality/value

In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 702