Search results

1 – 10 of 310
Article
Publication date: 26 June 2009

Eva Schmidova, Pavel Svanda, David Vesely and Andrea Kalendova

The purpose of this paper is to clarify the destabilisation mechanism that occurs with two types of ferritic corrosion‐resistant steel during the welding cycle.

1145

Abstract

Purpose

The purpose of this paper is to clarify the destabilisation mechanism that occurs with two types of ferritic corrosion‐resistant steel during the welding cycle.

Design/methodology/approach

A series of experimental weld joints was made to verify the actual response of non‐stabilised corrosion‐resistant steel, and of the same steel that had been stabilised by added titanium. The character and extent of the ensuing structural changes were analysed. The essential characteristics of degradation in the heat‐affected zone are evaluated using optical and scanning electron microscopy; individual phases are identified by means of EDX microanalysis. The underlying mechanism for the loss of stability is induced experimentally in several stages; depending on the thermal doping level and interaction with the environment during the welding process, phases of various types are precipitated. These phases subsequently are studied in connection with the original microstructural characteristics of the steel and the induced grain boundary decohesion of the surface layer. The scope and character of the damage are analysed and the results verified by analysing the actual operating damage to the weldment.

Findings

A degradation mechanism of stabilised corrosion‐resistant steel 1.4510 is induced that is associated with destabilisation of titanium phases. The importance is demonstrated of ensuring that a protective atmosphere is maintained during welding, and various phase changes in the surface layers are identified that can delimit the use of appropriate post‐weld passivation procedures.

Practical implications

Identification of the mechanism underlying the damage to the surface layer in welded stabilised ferritic steel will find application in development of welding technology, specifically in designing a technology process and subsequent surface treatment.

Originality/value

The results bring new knowledge of material response of steel 1.4510 under specific material processing conditions; a destabilisation mechanism related to precipitation of several titanium‐containing phases is identified. The result enables the fatigue limit of the welded material as a function of the welding technology employed, which offers increased service life under specific application conditions.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 August 2019

Sourabh Shukla, Awanikumar P. Patil and Ankur Bansod

The purpose of this study is to investigate the effect of prior cold work after annealing and thermal ageing on intergranular corrosion or sensitization of Cr-Mn austenitic…

Abstract

Purpose

The purpose of this study is to investigate the effect of prior cold work after annealing and thermal ageing on intergranular corrosion or sensitization of Cr-Mn austenitic stainless steel (ASS) is necessary. Such a study is particularly important because ASS are mostly used and welded in mill-annealed condition, which is equivalent to fully annealed material with some cold worked (CW).

Design/methodology/approach

The effect of 15% CW of 202 ASS were investigated using microstructural (optical microscope), mechanical (grain size and hardness) and electrochemical methods (double loop electrochemical reactivation [DLEPR]) followed by thermal ageing (800°C, 900°C and 1000°C).

Findings

X-ray diffraction analysis shows the presence of martensite in CW samples. The increase in martensite formation (800°C and 900°C) can be observed with the variation of thermal ageing (TA) duration (1, 2 and 3 h). However, there was decreased in the formation of martensite at the temperature of 1000°C because of martensitic reversal. The DLEPR test result shows higher degree of sensitization (DOS) for 800°C and 900°C but for 1000°C, there was re-homogenization of samples which leads to lower DOS (thermal ageing for 1, 2 and 3 h).

Originality/value

For 300 series steel, there are various literature available for the effect of cold work on mechanical properties and DOS. However, no one has investigated the effect of cold work and thermal ageing on the sensitization of 202 Cr-Mn ASS.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 January 2020

Taiwo Ebenezer Abioye, Igbekele Samson Omotehinse, Isiaka Oluwole Oladele, Temitope Olumide Olugbade and Tunde Isaac Ogedengbe

The purpose of this study is to determine the effects of post-annealing and post-tempering processes on the microstructure, mechanical properties and corrosion resistance of the…

Abstract

Purpose

The purpose of this study is to determine the effects of post-annealing and post-tempering processes on the microstructure, mechanical properties and corrosion resistance of the AISI 304 stainless steel gas metal arc weldment.

Design/methodology/approach

Gas metal arc welding of AISI 304 stainless steel was carried out at an optimized processing condition. Thereafter, post-annealing and post-tempering processes were performed on the weldment. The microstructure, mechanical and electrochemical corrosion properties of the post-weld heat treated samples, as compared with the as-welded, were investigated.

Findings

The as-welded joint was characterized with sub-granular grain structure, martensite formation and Cr-rich carbides precipitates. This made it harder than the post-annealed and post-tempered joints. Because of slower cooling in the furnace, the post-annealed joint contained Cr-rich carbides precipitates. However, the microstructure of the post-tempered joint is more refined and significantly devoid of the carbide precipitates. Post-tempering process improved the elongation (∼23%), tensile (∼10%) and impact (∼31%) strengths of the gas metal arc AISI 304 stainless steel weldment, while post-annealing process improved the elongation (∼20%) and impact strength (∼72%). Owing to the refined grain structure and significant elimination of the Cr-rich carbide precipitates at the joint, the post-tempered joint exhibited better corrosion resistance in 3.5 Wt.% NaCl solution than the post-annealed and the as-welded joints.

Originality/value

The appropriate post-weld heat treatment that enhances microstructural homogeneity and quality of the AISI 304 gas metal arc welded joint was determined.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 March 2013

Eva Schmidova, Pavel Svanda, David Vesely and Andrea Kalendova

The purpose of this paper is to verify the capability of pigmented coatings to mitigate the effects of thermal sensitisation of 430 stainless steel.

Abstract

Purpose

The purpose of this paper is to verify the capability of pigmented coatings to mitigate the effects of thermal sensitisation of 430 stainless steel.

Design/methodology/approach

Experimental weld joints of non‐stabilised ferritic corrosion resistant steel type AISI 430 were prepared. Protective coatings in several variants were applied to a number of weldments, subsequently subject to corrosion tests in SO2 and NaCl. The anticorrosive efficiency of the coatings was evaluated by means of normative visual assessment and metallographic analysis of the mechanism and depth of corrosion damage.

Findings

Anticorrosive efficiency of the tested coatings was experimentally established under conditions where differences were identified in structural changes caused by welding, or resulting from mechanical damage to the coating. Differences in the progress of corrosion damage caused by phase changes in the heat‐affected zone were established.

Practical implications

Tests of anticorrosive efficiency of coatings of selected types provided information about possible reduction in sensitisation of welded non‐stabilised steel. The effect of the investigated processes on degradation of anticorrosive resistance was identified.

Originality/value

A specific effect of phase changes accompanying welding on the corrosion mechanism was described and so were the reasons underlying development of corrosion damage at visually identical character of surface damage.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 November 2020

Fuad Khoshnaw, Fabienne Delaunois and Veronique Vitry

To find out the optimum heat treatments to recover the microstructural changes of stainless steel alloys.

95

Abstract

Purpose

To find out the optimum heat treatments to recover the microstructural changes of stainless steel alloys.

Design/methodology/approach

A total of four alloys were used in this study: two duplex stainless steel (DSS) alloys type 2304 and 2205, super DSS (SDSS) type 2507 and austenitic stainless steel alloy type 316 L. The alloys were heated to different temperatures, 750, 850, 950 and 1,050°C, for three different times, 10 min, 1 and 4 h.

Findings

The microstructural investigations showed that 2205 and 2507 behaved similarly in recovering their microstructures, especially in terms of the ferrite:austenite ratio within specific heat treatments and changing the hardness values. The results indicated that the microstructure of both alloys started to change above 750°C, the largest changes were shown at 850 and 950°C as the lowest ferrite content (FC%) was recorded at 850°C for both alloys. However, the microstructures of both alloys started to recover at 1,050°C. The reduction in the hardness values was attributed to the formation of new ferrite grains, free of residual stresses. On the other hand, the microstructure of the alloy type 2304 was stable and did not show large changes due to the applied heat treatments, similarly for austenitic alloy except showing chromium (Cr) carbide precipitation.

Originality/value

Finding the exact heat treatments, temperature and time to recover the microstructural changes of DSS alloys.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 1981

P. Brezina and B. Sonderegger

The parameters solution temperature, intermediate treatment and cooling rate (from high temperature and after tempering) were examined by statistical multiple factor analysis…

Abstract

The parameters solution temperature, intermediate treatment and cooling rate (from high temperature and after tempering) were examined by statistical multiple factor analysis. Tempering temperature (200 to 650°C) and duration (4 to 64 h) were graded exhaustively.

Details

Anti-Corrosion Methods and Materials, vol. 28 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 20 October 2020

Gustavo Tressia, Luis H.D. Alves, Amilton Sinatora, Helio Goldenstein and Mohammad Masoumi

The purpose of this study is to develop a lower bainite structure consists of a dispersion of fine carbide inside plates of bainitic ferrite from chemical composition unmodified…

Abstract

Purpose

The purpose of this study is to develop a lower bainite structure consists of a dispersion of fine carbide inside plates of bainitic ferrite from chemical composition unmodified conventional pearlitic steel under bainitic transformation and to investigate its effect on tensile properties and wear resistance.

Design/methodology/approach

A commercial hypereutectoid pearlitic rail steel was subjected to three different bainitic transformation treatments followed by tempering to develop a desirable microstructure with a DIL805 BÄHR dilatometer. A comprehensive microstructural study was performed by scanning electron microscopy and energy dispersive x-ray spectroscopy. Finally, the mechanical properties and wear resistance were evaluated by tensile, microhardness, and pin-on-disc tests.

Findings

The results showed that the best combination of mechanical properties and sliding wear resistance was obtained in the sample subjected to bainitic transformation at 300°C for 600 s followed by tempering at 400°C for 300 s. This sample, which contained a bainitic ferrite structure, exhibited approximately 20% higher hardness and approximately 53% less mass loss than the as-received pearlitic sample due to the mechanically induced transformation in the contact surface.

Originality/value

Although pearlitic steel is widely used in the construction of railways, recent studies have revealed that bainitic transformation at the same rail steels exhibited higher wear resistance and fatigue strengths than conventional pearlitic rail at the same hardness values. Such a bainitic microstructure can improve the mechanical properties and wear resistance, which is a great interest in the railway industry.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0282/

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 August 2021

Sachin Ambade, Chetan Tembhurkar, Awanikumar P. Patil, Prakash Pantawane and Ravi Pratap Singh

The purpose of this study is on AISI 409 M ferritic stainless steel (FSS) which is developing a preferred choice for railway carriages, storage tanks and reactors in chemical…

Abstract

Purpose

The purpose of this study is on AISI 409 M ferritic stainless steel (FSS) which is developing a preferred choice for railway carriages, storage tanks and reactors in chemical plants. The intergranular corrosion behavior of welded SS 409 M has been studied in H2SO4 solution (0.5 M) with the addition of NH4SCN (0.01 M) with different heat input. As this study is very important in context of various chemical and petrochemical industries.

Design/methodology/approach

The microstructure, mechanical properties and intergranular corrosion properties of AISI 409 M FSS using shielded metal arc welding were investigated. Shielded metal arc welding with different welding current values are used to change the heat input in the joints resulted in the microstructural variations. The microstructure of the welded steel was carefully inspected along the width of the heat-affected zone (HAZ) and the transverse-section of the thin plate.

Findings

The width of heat affected zone (3.1,4.2 and 5.8 mm) increases on increasing the welding heat input. Due to change in grain size (grain coarsening) as HAZ increased. From the microstructure, it was observed that the large grain growth which is dendritic and the structure become finer to increase in welding heat input. For lower heat input, the maximum microhardness value (388HV) was observed compared with medium (351 HV) and higher heat input (344 HV), which is caused by a rapid cooling rate and the depleted area of chromium (Cr) and nickel (Ni). The increase in weld heat input decreases tensile strength, i.e. 465 MPa, 440 MPa and 418 MPa for low, medium and high heat input, respectively. This is because of grain coarsening and chromium carbide precipitation in sensitized zone and wider HAZ. The degree of sensitization increases (27.04%, 31.86% and 36.08%) to increase welding heat input because of chromium carbide deposition at the grain boundaries. The results revealed that the higher degree of sensitization and the difference in intergranular corrosion behavior under high heat input are related to the grain growth in the HAZ and the weld zone.

Originality/value

The study is based on intergranular corrosion behavior of welded SS 409 M in H2SO4 solution (0.5 M) with the addition of NH4SCN (0.01 M) with different heat input which is rarely found in literature.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 1996

D. Mukherjee, S. Muralidharan, G.T. Parthiban, D. Jayaperumal, S.P. Manoharan and K. Balakrishnan

Sensitization of stainless steels has been posing serious problems to the industries. Techniques for rapid detection of sensitized surfaces are being probed throughout the world…

Abstract

Sensitization of stainless steels has been posing serious problems to the industries. Techniques for rapid detection of sensitized surfaces are being probed throughout the world. Characterization over a wide behavioural range is essential for the above. Characterizes sensitized surfaces of AISI 304 stainless steel using impedance and tafel‐extrapolation techniques. Welded 304 stainless steel interfaces were subjected to dissolution tests, in different media, for assessing the effect of prolonged post‐stress relieving on the mitigation of surface dissolution. The corrosion rate values were correlated with the period of sensitization and Huey test results. The sensitized stainless steels were also subjected to electrochemical tests in different solutions. From the impedance behaviour of the sensitized surfaces in 3 per cent NaCl electrolyte, it was observed that the rate of fall in the polarization resistance may be used to monitor the extent of sensitization in 304 stainless steel, with better accuracy, than that in utilizing the polarization resistance itself.

Details

Anti-Corrosion Methods and Materials, vol. 43 no. 6
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 4 December 2018

Zhentao Yuan, Yehua Jiang, Lu Li and Zulai Li

The purpose of this paper is to study the microstructure and the high-temperature tribology behavior of a high-speed steel (HSS) roller material with boron as the main alloy…

Abstract

Purpose

The purpose of this paper is to study the microstructure and the high-temperature tribology behavior of a high-speed steel (HSS) roller material with boron as the main alloy element under different heat treatments, aiming to provide some theoretical references for its engineering application.

Design/methodology/approach

The samples of high boron HSS were quenched at 900°C, 1,000°C, 1,050°C and 1,150°C. The microstructure, composition and phase composition of this new HSS were analyzed by OM, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffractometer. The surface hardness and the tribology behavior under high temperature were measured by Rockwell hardness tester and the high-temperature friction and wear tester. The wear morphology was observed by SEM.

Findings

The high-temperature friction coefficient and the relative wear rate of the high boron HSS decrease first, then increase with the rise of the quenching temperature. When the quenching temperature is 1,050°C, both the friction coefficient (0.425) and the relative wear rate (79 per cent) are the smallest. Under the high-temperature friction environment, the high boron HSS mainly includes oxidation wear, adhesive wear and abrasive wear. The effect of abrasive wear is weakened gradually with the rise of the quenching temperature, and the high-temperature wear resistance is improved significantly. Compared with the traditional roll materials, the service life of the new high boron HSS is greatly improved. It is an ideal substitute product for the high chromium cast iron roll.

Originality/value

The boron element replaces other precious metals in high boron HSS, which has the advantage of low production cost, and it has a wide application in the field of roll materials. In this paper, the microstructure, the transformation of hard phases and the high-temperature tribology behavior of this new high boron HSS under different heat treatments were studied, aiming to provide some theoretical references for its engineering application.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 310