Search results

1 – 10 of 241
Article
Publication date: 5 April 2024

Heping Liu, Jinxin Lu, Fusheng Zhu and Ani Luo

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Abstract

Purpose

This study proposes a tensegrity-based traction structure with D-bar dual cable units. It is used to connect the airship and the ground to stabilize the airship.

Design/methodology/approach

The mathematical models and dynamic models of the D-bar dual cable (hereafter referred to as DD cable) unit of the tensegrity-based traction structure are established. Based on the minimum mass method, the mass of the DD cable unit in the critical state (cable member is yielding, or bar member is buckling or yielding) is analyzed. Then, the tensile strength of the DD cable unit and single cable unit under the same condition is compared using the control variate method. Finally, based on ANSYS dynamic simulation, the stability of the two structures under the same external force disturbance was tested.

Findings

Expressions for the minimum mass of the DD cable unit under different failure conditions are solved. Dynamic simulation results show that the capacity of resisting disturbance of the DD cable unit is much better than that of the single cable unit under the same wind speed. So, we find a structure more suitable for the fixed connection of an airship.

Originality/value

This study helps to provide theoretical reference and thinking for the practical application of the traction structure with a D-bar dual cable unit.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Xin Meng, Qingyang Ren, Songqiang Xiao, Bin Chen and Hongfei Li

The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of…

Abstract

Purpose

The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of anchor cable subjected to tension.

Design/methodology/approach

ABAQUS numerical software is applied to construct the numerical models of tension-type anchor cables with different diameters. Through explicit contact, the characteristics of contact between grouting body-anchor cable and grouting body-rock mass are determined. Confining pressure is applied to the model through surface pressure, and drawing force is applied to the model by displacement loading so as to simulate the tension process of the anchor cable.

Findings

The results show that the stress is transmitted in both axial and radial directions in the anchorage section and distributed in a cone. The shear stress in the grouting body is unevenly distributed, and its peak value increases with the rise in confining pressure and anchor cable diameter. The stress characteristics of torque and axial force are basically consistent and evenly distributed in the free section; they gradually decrease in the anchorage section. Due to the tension-torsion coupling effect, the internal stress characteristics of the anchor cable structure vary. On average, the anchorage performance of each anchor cable model is improved by 6.19%.

Originality/value

The proposed method of numerical modelling is effective in addressing the interface contact between the anchor cable and the grouting body and in solving the problem with convergence of calculation. Compared with the indoor test, this method is more suited to collecting the internal mechanical data of the anchor body.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 September 2023

Xuanzhi Li, Suduo Xue, Xiongyan Li, Guanchen Liu and Renjie Liu

Instantaneous unloading with equal force is usually used to simulate the sudden failure of cables. This simulation method with equivalent force requires obtaining the magnitude…

Abstract

Purpose

Instantaneous unloading with equal force is usually used to simulate the sudden failure of cables. This simulation method with equivalent force requires obtaining the magnitude and direction of the force for the failed cable in the normal state. It is difficult, however, to determine the magnitude or direction of the equivalent force when the shape of the cable is complex (space curve). This model of equivalent force may be difficult to establish. Thus, a numerical simulation method, the instantaneous temperature rise method, was proposed to address the dynamic response caused by failures of the cables with complex structural form.

Design/methodology/approach

This method can instantly reduce the cable force to zero through the instantaneous temperature rise process of the cable. Combined with theoretical formula and finite element model, the numerical calculation principle and two key parameters (temperature rise value and temperature rise time) of this method were detailed. The validity of this approach was verified by comparing it with equivalent force models. Two cable-net case with saddle curved surfaces were presented. Their static failure behaviors were compared with the dynamic failure behaviors calculated by this method.

Findings

This simulation method can effectively address the structural dynamic response caused by cable failure and may be applied to all cable structures.

Originality/value

An instantaneous temperature rise method (ITRM) is proposed and verified. Its calculation theory is detailed. Two key parameters, temperature rise value and temperature rise time, of this method are discussed and the corresponding reference values are recommended.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 July 2023

Chong Xu, Pengbo Wang, Fan Yang, Shaohua Wang, Junping Cao and Xin Wang

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Abstract

Purpose

This paper aims at building a discharge model for the power cable bellows based on plasma energy deposition and analyzing the discharge ablation problem.

Design/methodology/approach

Aiming at the multiphysical mechanism of the discharge ablation process, a multiphysical field model based on plasma energy deposition is established to analyze the discharge characteristics of the power cable bellows. The electrostatic field, plasma characteristics, energy deposition and temperature field are analyzed. The discharge experiment is also carried out for result validation.

Findings

The physical mechanism of the bellows ablative effect caused by partial discharge is studied. The results show that the electric field intensity between the aluminum sheath and the buffer layer easily exceeds the pressure resistance value of air breakdown. On the plasma surface of the buffer layer, the electron density is about 4 × 1,019/m3, and the average temperature of electrons is about 3.5 eV. The energy deposition analysis using the Monte Carlo method shows that the electron range in the plasma is very short. The release will complete within 10 nm, and it only takes 0.1 s to increase the maximum temperature of the buffer layer to more than 1,000 K, thus causing various thermal effects.

Originality/value

Its physical process involves the distortion of electric field, formation of plasma, energy deposition of electrons, and abrupt change of temperature field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 September 2023

Donghui Hu, Shenyou Song, Zongxing Zhang and Linfeng Wang

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Abstract

Purpose

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Design/methodology/approach

The “two-step” hot-dip coating process for cable steel wires was developed, which involved first hot-dip galvanizing and then hot-dip galvanizing of aluminum magnesium alloy. The corrosion rate, polarization curve and impedance of Zn–6Al–1Mg and Zn–10Al–3Mg alloy-coated steel wires were compared through acetate spray test and electrochemical test, and the corrosion mechanism of Zn–Al–Mg alloy-coated steel wires was revealed.

Findings

The corrosion resistance of Zn–10Al–3Mg alloy-coated steel wires had the best corrosion resistance, which was more than seven times that of pure zinc-coated steel wires. The corrosion current of Zn–10Al–3Mg alloy-coated steel wires was lower than that of Zn–6Al–1Mg alloy-coated steel wires, whereas the capacitive arc and impedance value of the former were higher than that of the latter, making it clear that the corrosion resistance of Zn–10Al–3Mg was better than that of Zn–6Al–1Mg alloy coating. Moreover, the Zn–Al–Mg alloy-coated steel wires for bridge cables had the function of coating “self-repairing.”

Originality/value

Controlling the temperature and time of the hot dip galvanizing stage can reduce the thickness of transition layer and solve the problem of easy cracking of the transition layer in the Zn–Al–Mg alloy coating due to the Sandelin effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 June 2023

Takumi Yamaguchi and Fuminobu Ozaki

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope…

45

Abstract

Purpose

The main purpose of this study was to evaluate the tensile strengths of JIS G3549 super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections at fire and post fire.

Design/methodology/approach

Steady-state tests from ambient temperature (20 °C) to 800 °C, transient-state tests under the allowable design tensile force and tensile tests in an ambient temperature environment after heating (heating temperatures of 200–800 °C) were conducted.

Findings

The tensile strengths of the wire rope and end-connection specimens at both fire and post fire were obtained. The steel wire rope specimens possessed larger reduction factors than general hot-rolled mild steels (JIS SS400) and high-strength steel bolts (JIS F10T). The end-connection specimens with sufficient socket lengths exhibited ductile fracture of the wire rope part at both fire and post fire; however, those with short socket lengths experienced a pull-out fracture at the socket.

Originality/value

The fundamental and important tensile test results of the super high-strength steel strand wire ropes (1,570 MPa-class high-carbon steels) and wire rope open swaged socket connections were accumulated at fire and post fire, and the fracture modes were clarified. The obtained test results contribute to fire resistance performance-based design of cable steel structures at fire and fire-damage investigations to consider their reusability post fire.

Article
Publication date: 22 February 2024

Subrat Kumar Barik, Smrutimayee Nanda, Padarbinda Samal and Rudranarayan Senapati

This paper aims to introduce a new fault protection scheme for microgrid DC networks with ring buses.

Abstract

Purpose

This paper aims to introduce a new fault protection scheme for microgrid DC networks with ring buses.

Design/methodology/approach

It is well recognized that the protection scheme in a DC ring bus microgrid becomes very complicated due to the bidirectional power flow. To provide reliable protection, the differential current signal is decomposed into several basic modes using adaptive variational mode decomposition (VMD). In this method, the mode number and the penalty factor are chosen optimally by using arithmetic optimization algorithm, yielding satisfactory decomposition results than the conventional VMD. Weighted Kurtosis index is used as the measurement index to select the sensitive mode, which is used to evaluate the discrete Teager energy (DTE) that indicates the occurrence of DC faults. For localizing cable faults, the current signals from the two ends are used on a sample-to-sample basis to formulate the state space matrix, which is solved by using generalized least squares approach. The proposed protection method is validated in MATLAB/SIMULINK by considering various test cases.

Findings

DTE is used to detect pole-pole and pole-ground fault and other disturbances such as high-impedance faults and series arc faults with a reduced detection time (10 ms) compared to some existing techniques.

Originality/value

Verification of this method is performed considering various test cases in MATLAB/SIMULINK platform yielding fast detection timings and accurate fault location.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 May 2023

Brian Gregory

This study aims to explore a rarely studied form of person–organization fit, perceptual fit, which captures the accuracy of an employee’s understanding of their organization’s…

Abstract

Purpose

This study aims to explore a rarely studied form of person–organization fit, perceptual fit, which captures the accuracy of an employee’s understanding of their organization’s culture. The managerial antecedents of perceptual fit were explored to increase understanding about how employees learn their organizational culture and the role that managers play in that process. In addition, the behavioural and attitudinal consequences of perceptual fit were examined to gain a deeper appreciation for the impact of misunderstanding one’s organizational culture on work attitudes and cognitions.

Design/methodology/approach

Survey tools were used to measure multiple workplace cognitions, attitudes and values from employees of three small health-care organizations. Organizational culture was measured for each organization so that perceptual fit could be ascertained, which represents an accuracy score of each individual’s comprehension of their organization’s culture. Regression analyses measured the hypothesized associations between perceptual fit and its proposed antecedents and consequences.

Findings

The results suggest that leader–member exchange (LMX) and perceived organizational support (POS) are both positively associated with perceptual fit. In terms of the outcomes of perceptual fit, the regression analyses provide support for an association between perceptual fit and psychological empowerment, job satisfaction and organizational commitment.

Originality/value

This study contributes to the literature by exploring how employees come to understand their organization’s culture, and the consequences of differing levels of understanding (i.e. perceptual fit). The study results suggest that managerial action such as LMX and POS can enhance the chances that an employee is able to understand their organization’s culture accurately. Furthermore, this research adds to our understanding of the individual consequences of understanding one’s organizational culture by providing evidence that psychological empowerment is associated with perceptual fit.

Details

International Journal of Organizational Analysis, vol. 32 no. 4
Type: Research Article
ISSN: 1934-8835

Keywords

Article
Publication date: 14 July 2023

YiQin Sang, Huang Li, Hongjuan Ge, Cong Gao, Yinxiao Hu and Hui Jin

This study aims to conduct the aircraft electrical wiring interconnection system (EWIS) safety risk assessment process abundantly and hierarchically and establish the assessment…

Abstract

Purpose

This study aims to conduct the aircraft electrical wiring interconnection system (EWIS) safety risk assessment process abundantly and hierarchically and establish the assessment index system considering the weights and interrelationships of different levels of indices.

Design/methodology/approach

Due to the failure of EWIS being multifactorial, hidden and diverse, this paper divides the factors influencing the failure of EWIS into 3 primary indices, 13 secondary indices and 38 tertiary indices. Taking open circuit failure (OCF) and short circuit failure (SCF) as examples, calculate the weights of assessment indices based on the triangular fuzzy number analytic hierarchy process (TFNAHP) and triangular fuzzy number decision-making trial and evaluation laboratory (TFNDEMATEL). The cloud model (CM) divides the risk levels and obtains the safety risk assessment results. The comparative analyses of different weight calculation methods, different failure modes and different aircraft EWIS zones verify the effectiveness and practicability of the proposed method.

Findings

The results show that the proposed method aligns more with the actual situation than other methods. Also, the results identify key focus objects in EWIS safety risk assessment, such as the surrounding environmental factors among the primary indices having the most significant influence on OCF and SCF, the risk level of SCF being higher than that of OCF, etc.

Originality/value

This paper proposes a safety risk assessment index system for aircraft EWIS based on the cable parameters, surrounding environmental factors, installation and protection methods. The weight assignment is added to the assessment index system, and the safety risk assessment model is constructed by combining TFNAHP, TFNDEMATEL and CM.

Access

Year

Last 6 months (241)

Content type

Article (241)
1 – 10 of 241