Search results

1 – 10 of 209
Article
Publication date: 3 February 2012

Zhang Yidong

The purpose of this paper is to prove the self‐repairing Cu film of Cu‐DDP additive in base lubricating oil.

Abstract

Purpose

The purpose of this paper is to prove the self‐repairing Cu film of Cu‐DDP additive in base lubricating oil.

Design/methodology/approach

Cu nanoparticles coated with dialkydithiophosphate (Coded as Cu‐DDP) were synthesized in situ by redox method. The size and structure of Cu‐DDP were characterized using transmission electronic microscopy (TEM) and electronic diffraction (ED) analysis. The self‐repairing performance of Cu‐DDP as additive in base lubricating oil was evaluated by MRH‐3 stock‐on‐ring testing machine. Scanning electronic microscopy (SEM), UMT‐2 tribometer, X‐ray photoelectron spectroscopy (XPS), and energy‐dispersive spectrum (EDS) were used to study the self‐repairing Cu film on the stock.

Findings

The test results showed that the modified Cu‐DDP additive in base lubricating oil exhibited excellent anti‐wear and friction‐reducing properties, as well as good self‐repairing performance.

Research limitations/implications

The thickness of the self‐repairing Cu film was unknown, and the relationship between thickness of the Cu film and load, time, rotation velocity was still necessary to investigate.

Practical implications

The Cu‐DDP additive was involved P and S elements, therefore, it is still promising to seek environment friendly additive without P and S elements.

Originality/value

For the first time, MRH‐3 stock‐on‐ring testing machine, Scanning electronic microscopy (SEM), UMT‐2 tribometer, X‐ray photoelectron spectroscopy (XPS), and energy‐dispersive spectrum (EDS) were widely used to study the self‐repairing Cu film on the stock.

Details

Industrial Lubrication and Tribology, vol. 64 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 October 2018

Zhipeng Wang, Zhiqin Qian, Ziye Song, Hongzhou Liu, Wenjun Zhang and Zhuming Bi

Even though multi-rotor aircrafts are becoming more and more prevalent in the fields of aerial photography, agricultural spraying, disaster searching and rescuing, how to achieve…

104

Abstract

Purpose

Even though multi-rotor aircrafts are becoming more and more prevalent in the fields of aerial photography, agricultural spraying, disaster searching and rescuing, how to achieve higher reliability and robustness of an aircraft still poses a big challenge. It is not a rare case that a multi-rotor aircraft is severely damaged or crushed when an actuator or sensor is malfunctioned. This paper aims at the resilience of an aircraft when a rotor is malfunctioned.

Design/methodology/approach

The reliability of a multi-rotor aircraft can be measured in terms of stability, robustness, resilience and fault tolerance. All of these four aspects are taken into consideration to improve overall reliability of aircrafts. When a rotor malfunction occurs, the control algorithm is cable of adjusting the operation conditions of the rest of rotors to achieve system stability.

Findings

In this paper, the authors first present a research topic on the development of a resilient multi-robot aircraft. A multi-rotor aircraft usually possesses more actuated motions than the required degrees of freedom.

Originality/value

The authors proposed to equip the multi-rotor aircraft with malfunction detecting sensors, and they developed the self-repairing algorithm to re-stabilize the aircraft when a malfunction of a rotor occurs. The design concept and methods were implemented on an eight-rotor aircraft, and the performance of the proposed instrumentation and self-repairing algorithm have been verified and validated.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 July 2018

Junwei Wu, Xiao Wang, Luhai Zhou, Xicheng Wei and Wurong Wang

Serpentine is usually added into the lubricant oil to form a self-repairing protective layer on worn ferrous surface. But few works have paid close attention to the preparation of…

Abstract

Purpose

Serpentine is usually added into the lubricant oil to form a self-repairing protective layer on worn ferrous surface. But few works have paid close attention to the preparation of composites with the addition of serpentine. In this work, serpentine reinforced Al matrix composites were successfully prepared to be industrial lubrication components. And its fabricating parameters, compressive strength and tribological properties were analyzed.

Design/methodology/approach

An MM-W1 three-pin-on-disk apparatus was used to investigate the tribological properties. The worn surface, microstructure and cross-sectional morphologies were characterized by scanning electron microscopy equipped with energy dispersive spectroscopy. The compression test was carried out on a universal testing machine. An X-ray diffractometer was used to investigate the phase constitutions. The decomposition temperature of serpentine powders was investigated by a thermal analyzer, which allows simultaneous differential scanning calorimetry and thermogravimetry. With the help of finite element method model, a diagrammatic model of the self-repairing surface layer was developed to analyze the anti-friction mechanism.

Findings

Through evaluating density and Brinell hardness, sintering at 560°C for 3 h are the appropriate parameters for fabricating the composites. Compressive strength was increased by the addition of serpentine. A self-repairing surface layer was formed, reducing the friction coefficient. And a diagrammatic model of the self-repairing surface layer was developed to analyze the anti-friction mechanism.

Originality/value

Serpentine was added in fabricating the Al matrix composites for the first time. Sintering parameters were optimized to make better Al/Si/serpentine composites. Compressive strength was increased by the addition of serpentine. A self-repairing surface layer was formed, reducing the friction coefficient under the dry sliding condition. And a diagrammatic model of the self-repairing surface layer was developed to analyze the anti-friction mechanism. It is hoped to be helpful in further confirming the factors for the formation of the self-repairing surface layer, and in designing a new industrial anti-friction composite used for dry sliding conditions.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2011

Yun‐hui Mo and De‐hua Tao

The purpose of the paper is to study a new type of lubrication additive with Nano‐Tin, and to analyze the tribological performance of the friction coatings that are formed by the…

Abstract

Purpose

The purpose of the paper is to study a new type of lubrication additive with Nano‐Tin, and to analyze the tribological performance of the friction coatings that are formed by the lubricants.

Design/methodology/approach

The Tin‐base additives were prepared and activated, friction testing was performed on an improved type MS‐800 four‐ball tester, and the nanometer additives with different contents of Tin were used as lubricants in steel‐copper tribo‐pair. The surface elements of friction coatings were investigated with Auger electron spectrum, and the thickness and element distribution of the coating were measured with scanning electron microscope.

Findings

The ultra‐thick friction coating (10‐20 μm) with abundant Tin was carried out and combined well with the surface of the copper sample when lubricated with oil containing this additive. The coating exhibited excellent anti‐wear and friction‐reducing capacities.

Research limitations/implications

The anticorrosion properties have not been estimated.

Practical implications

A useful Nano‐Tin base lubricating oil additive is prepared and the activate method is explored. It may provide the potential lubricating oil additive for steel‐copper tribo‐pair, such as steel worm‐copper worm wheel transmission.

Originality/value

This paper provides a Nano‐Tin base‐activated additive which, when used in lubricating oil, can form an ultra‐thick friction coating. It has the same self‐repairing properties as a steel‐copper tribo‐pair.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 5 September 2008

167

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 5
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 March 2006

110

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 February 2016

Yawen Zhang, Zhipeng Li, Jincan Yan, Tianhui Ren and Yidong Zhao

The aim of this paper is to study the tribological performance and self-repairing performance of surface-modified nanoscale serpentine powders as lubricant additives in the…

Abstract

Purpose

The aim of this paper is to study the tribological performance and self-repairing performance of surface-modified nanoscale serpentine powders as lubricant additives in the mineral base oil (5-CST).

Design/methodology/approach

Fourier transform infrared spectroscopy spectra and thermo-gravimetric analysis of both modified and unmodified serpentine were performed to analyse their grafting ratio and suspension after modified using a long-chain naphthene aliphatic acid. The tribological properties of surface-modified serpentine as lubricant additives in 5-CST were evaluated and the worn surfaces were investigated by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES).

Findings

The results show that the serpentine particles have high grafting ratio, improving the dispersity in 5-CST. When the serpentine concentration of 1.00 weight per cent is used as additives in 5-CST, friction coefficient reduces by 14.80 per cent under 294 N and wear scar diameter (WSD) decreases by 11.82 per cent. The results of X-ray absorption near edge structure and XANES show that the adsorption and tribochemical reactions occur to form self-repairing lubrication films.

Originality/value

The paper illustrates a tribofilm form on the rubbed surface, which is responsible for the decrease in friction and wear, mainly containing iron oxides, silicon oxides, magnesium oxides and organic compounds. The results are useful for further applications in advanced environmental friendly lubricating oils and additives.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Content available

Abstract

Details

Pigment & Resin Technology, vol. 42 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 6 September 2023

Donghui Hu, Shenyou Song, Zongxing Zhang and Linfeng Wang

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Abstract

Purpose

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Design/methodology/approach

The “two-step” hot-dip coating process for cable steel wires was developed, which involved first hot-dip galvanizing and then hot-dip galvanizing of aluminum magnesium alloy. The corrosion rate, polarization curve and impedance of Zn–6Al–1Mg and Zn–10Al–3Mg alloy-coated steel wires were compared through acetate spray test and electrochemical test, and the corrosion mechanism of Zn–Al–Mg alloy-coated steel wires was revealed.

Findings

The corrosion resistance of Zn–10Al–3Mg alloy-coated steel wires had the best corrosion resistance, which was more than seven times that of pure zinc-coated steel wires. The corrosion current of Zn–10Al–3Mg alloy-coated steel wires was lower than that of Zn–6Al–1Mg alloy-coated steel wires, whereas the capacitive arc and impedance value of the former were higher than that of the latter, making it clear that the corrosion resistance of Zn–10Al–3Mg was better than that of Zn–6Al–1Mg alloy coating. Moreover, the Zn–Al–Mg alloy-coated steel wires for bridge cables had the function of coating “self-repairing.”

Originality/value

Controlling the temperature and time of the hot dip galvanizing stage can reduce the thickness of transition layer and solve the problem of easy cracking of the transition layer in the Zn–Al–Mg alloy coating due to the Sandelin effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 209