Search results

1 – 10 of over 2000
Article
Publication date: 1 July 2006

Chongbin Zhao, T. Nishiyama and A. Murakami

The main purpose of this paper is to present and use the particle simulation method to explicitly simulate the spontaneous crack initiation phenomenon in brittle materials, and to…

Abstract

Purpose

The main purpose of this paper is to present and use the particle simulation method to explicitly simulate the spontaneous crack initiation phenomenon in brittle materials, and to compare the particle simulation results with experimental ones on the laboratory scale.

Design/methodology/approach

Using the particle simulation method, the brittle material is simulated as an assembly of particles so that the microscopic mechanism of inter‐ and intra‐particle crack initiation can be straightforwardly considered on the microscopic scale. A laboratory test has been conducted using a gypsum sample model to validate the particle simulation method for explicitly simulating the spontaneous crack initiation phenomenon.

Findings

The paper finds that in terms of simulating the macroscopic sliding surface along or around the contact plane between a block and its foundation, both the laboratory test and the particle simulation have produced consistent results. This indicated that the particle simulation method is capable of simulating macroscopic cracks through simulating conglomerations and accumulations of microscopic crack initiation within the brittle material. Compared with other numerical methods, the particle simulation method is more suitable for explicitly and effectively simulating spontaneous crack initiation problems on the microscopic scale in brittle materials.

Originality/value

The particle simulation method can be used to explicitly and effectively simulate the spontaneous crack initiation on the microscopic scale in brittle materials. It can be also used to simulate the macroscopic sliding surface along or around the contact plane between a block and its foundation. The experimental results of simulating the spontaneous crack initiation on the laboratory scale in brittle materials are very valuable for validating the numerical simulation results obtained not only from the particle simulation method, but also from other numerical simulation methods.

Details

Engineering Computations, vol. 23 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1958

J.R. Linge

NOTWITHSTANDING the fact that there exists a considerable amount of literature published in various forms on the subject of brittle lacquers and their applications to a multitude…

Abstract

NOTWITHSTANDING the fact that there exists a considerable amount of literature published in various forms on the subject of brittle lacquers and their applications to a multitude of diverse problems a brief resume of some of the general principles involved would seem not to be out of place.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 17 August 2021

Mingkang Zhang, Yongqiang Yang, Meizhen Xu, Jie Chen and Di Wang

The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM).

Abstract

Purpose

The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM).

Design/methodology/approach

The Diamond structure was designed by the triply periodic minimal surface function in MATLAB, and multi-materials porous structures were manufactured by SLM. Compression tests were applied to analyze the anisotropy of mechanical properties of multi-materials porous structures.

Findings

Compression results show that the multi-materials porous structure has a strong anisotropy behavior. When the compression force direction is parallel to the material arrangement, multi-materials porous structure was compressed in a layer-by-layer way, which is the traditional deformation of the gradient structure. However, when the compression force direction is perpendicular to the material arrangement, the compression curves show a near-periodic saw-tooth waveform characteristic, and this kind of structure was compressed consistently. It is demonstrated that the combination with high strength brittle material and low strength plastic material improves compression mode, and plastic material plays a role in buffering fracture.

Originality/value

This research provides a new method for the design and manufacturing of multi-materials porous structures and an approach to change the compression behavior of the porous structure.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 July 2019

Lei Liu, Zongwei Xu, Dongyu Tian, Alexander Hartmaier, Xichun Luo, Junjie Zhang, Kai Nordlund and Fengzhou Fang

This paper aims to reveal the mechanism for improving ductile machinability of 3C-silicon carbide (SiC) and associated cutting mechanism in stress-assisted nanometric cutting.

Abstract

Purpose

This paper aims to reveal the mechanism for improving ductile machinability of 3C-silicon carbide (SiC) and associated cutting mechanism in stress-assisted nanometric cutting.

Design/methodology/approach

Molecular dynamics simulation of nano-cutting 3C-SiC is carried out in this paper. The following two scenarios are considered: normal nanometric cutting of 3C-SiC; and stress-assisted nanometric cutting of 3C-SiC for comparison. Chip formation, phase transformation, dislocation activities and shear strain during nanometric cutting are analyzed.

Findings

Negative rake angle can produce necessary hydrostatic stress to achieve ductile removal by the extrusion in ductile regime machining. In ductile-brittle transition, deformation mechanism of 3C-SiC is combination of plastic deformation dominated by dislocation activities and localization of shear deformation. When cutting depth is greater than 10 nm, material removal is mainly achieved by shear. Stress-assisted machining can lead to better quality of machined surface. However, there is a threshold for the applied stress to fully gain advantages offered by stress-assisted machining. Stress-assisted machining further enhances plastic deformation ability through the active dislocations’ movements.

Originality/value

This work describes a stress-assisted machining method for improving the surface quality, which could improve 3C-SiC ductile machining ability.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 May 2021

P.S. Liu and X.M. Ma

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings…

Abstract

Purpose

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings in engineering applications.

Design/methodology/approach

With the octahedral structure model proposed by the present authors themselves, the fundamentally mechanical relations have been systematically studied for reticular metal foams with open cells in their previous works. On this basis, such model theory is continually used to investigate the failure mode of this kind of porous materials under compression, bending, torsion and shearing, which are common loading forms in engineering applications.

Findings

The pore-strut of metal foams under different compressive loadings will fail in the tensile breaking mode when it is brittle. While it is ductile, it will tend to the shearing failure mode when the shearing strength is half or nearly half of the tensile strength for the corresponding dense material and to the tensile breaking mode when the shearing strength is higher than half of the tensile strength to a certain value. The failure modes of such porous materials under bending, torsional and shearing loads are also similarly related to their material species.

Originality/value

This paper presents a distinctive method to conveniently analyze and estimate the failure mode of metal foams under different loadings in engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 September 1968

J. Morley

THE mechanical properties of structural materials are ultimately set by the type of atoms forming the solid and the nature of the forces between them. If we want to produce…

Abstract

THE mechanical properties of structural materials are ultimately set by the type of atoms forming the solid and the nature of the forces between them. If we want to produce materials having superior mechanical properties to those currently available with metal alloys we have to consider using materials formed from light atoms having strong bonding forces between them. Such substances are ceramics and, as normally encountered, are weak and brittle. Research has been aimed at the production of such materials in the form of strong fibres and on the use of such fibres to reinforce a matrix as glass fibres are used to reinforce plastics.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 18 April 2016

David Impens and R.J. Urbanic

The purpose of this paper is to characterize mechanical properties (tensile, compressive and flexural) for the three-dimensional printing (3DP) process, using various common…

Abstract

Purpose

The purpose of this paper is to characterize mechanical properties (tensile, compressive and flexural) for the three-dimensional printing (3DP) process, using various common recommended infiltrate materials and post-processing conditions.

Design/methodology/approach

A literature review is conducted to assess the information available related to the mechanical properties, as well as the experimental methodologies which have been used when investigating the 3D printing process characteristics. Test samples are designed, and a methodology to measure infiltrate depths is presented. A full factorial experiment is conducted to collect the tensile, compressive and bending forces for a set of infiltrates and build orientations. The impact of the infiltrate type and depth with respect to the observed strength characteristics is evaluated.

Findings

For most brittle materials, the ultimate compression strength is much larger than the ultimate tensile strength, which is shown in this work. Unique stress–strain curves are generated from the infiltrate and build orientation conditions; however, the compressive strength trends are more consistent in behavior compared to the tensile and flexural results. This comprehensive study shows that infiltrates can significantly improve the mechanical characteristics, but performance degradation can also occur, which occurred with the Epsom salts infiltrates.

Research limitations/implications

More experimental research needs to be performed to develop predictive models for design and fabrication optimization. The material-infiltrate performance characteristics vary per build orientation; hence, experimental testing should be performed on intermediate angles, and a double angle experiment set should also be conducted. By conducting multiple test scenarios, it is now understood that this base material-infiltrate combination does not react similar to other materials, and any performance characteristics cannot be easily predicted from just one study.

Practical implications

These results provide a foundation for a process design and post-processing configuration database, and downstream design and optimization models. This research illustrates that there is no “best” solution when considering material costs, processing options, safety issues and strength considerations. This research also shows that specific testing is required for new machine–material–infiltrate combinations to calibrate a performance model.

Originality/value

There is limited published data with respect to the strength characteristics that can be achieved using the 3DP process. No published data with respect to stress–strain curves are available. This research presents tensile, compressive and flexural strength and strain behaviors for a wide variety of infiltrates, and post-processing conditions. A simple, unique process is presented to measure infiltrate depths. The observed behaviors are non-linear and unpredictable.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 October 2003

Sebastian Storch, Detmar Nellessen, Guenther Schaefer and Rolf Reiter

Metal‐based powder systems for selective laser sintering applications provide flexibility in the part geometry and promise a high quality profile regarding their material

1728

Abstract

Metal‐based powder systems for selective laser sintering applications provide flexibility in the part geometry and promise a high quality profile regarding their material technologies characteristic. In this field of application, materials have to fulfil high demands on their properties already in the conceptual phase of development. For the integration of selective laser sintered parts into the development process, determining their properties using material engineering methods is absolutely essential. This paper concerns with the methods of material analysis, the particular material properties of sintered metals and finally with the description of the properties of the powder systems EOS DirectSteel 20 and 3D Laser Form ST100 in comparison to conventional materials used in automotive engines and power trains.

Details

Rapid Prototyping Journal, vol. 9 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic…

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 1 January 2009

Robin L. Dale

RLG is a not-for-profit international alliance of about 160 members, including universities and colleges, national and public research libraries, archives, historical societies…

Abstract

RLG is a not-for-profit international alliance of about 160 members, including universities and colleges, national and public research libraries, archives, historical societies, museums, and independent research collections devoted to improving access to information that supports research and learning. Founded in 1974 as the Research Libraries Group by four visionary library directors from Columbia, Harvard and Yale universities and the New York Public Library, the consortium formed to allow research institutions to tackle tough challenges via collaborative action. Key issues were managing the transition from locally self-sufficient and independently comprehensive collections to a system of interdependencies that would preserve and enhance the capacity for research in all fields of knowledge and improving the ability to locate and retrieve relevant research resources (RLG, 1986). At its inception, four activity areas were identified for collaborative action: cooperative bibliographic control and access; effective mechanisms for sharing information and resources among member institutions; expanded and coordinated collection development efforts; and preservation of the collections, either in the original or surrogate format.

Details

Advances in Librarianship
Type: Book
ISBN: 978-0-12-024627-4

1 – 10 of over 2000