Search results

1 – 10 of over 3000
Article
Publication date: 10 January 2024

Tingwei Gu, Shengjun Yuan, Lin Gu, Xiaodong Sun, Yanping Zeng and Lu Wang

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic

Abstract

Purpose

This paper aims to propose an effective dynamic calibration and compensation method to solve the problem that the statically calibrated force sensor would produce large dynamic errors when measuring dynamic signals.

Design/methodology/approach

The dynamic characteristics of the force sensor are analyzed by modal analysis and negative step dynamic force calibration test, and the dynamic mathematical model of the force sensor is identified based on a generalized least squares method with a special whitening filter. Then, a compensation unit is constructed to compensate the dynamic characteristics of the force measurement system, and the compensation effect is verified based on the step and knock excitation signals.

Findings

The dynamic characteristics of the force sensor obtained by modal analysis and dynamic calibration test are consistent, and the time and frequency domain characteristics of the identified dynamic mathematical model agree well with the actual measurement results. After dynamic compensation, the dynamic characteristics of the force sensor in the frequency domain are obviously improved, and the effective operating frequency band is widened from 500 Hz to 1,560 Hz. In addition, in the time domain, the rise time of the step response signal is reduced from 0.29 ms to 0.17 ms, and the overshoot decreases from 26.6% to 9.8%.

Originality/value

An effective dynamic calibration and compensation method is proposed in this paper, which can be used to improve the dynamic performance of the strain-gauge-type force sensor and reduce the dynamic measurement error of the force measurement system.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 June 2019

K. Gobi, B. Kannapiran, D. Devaraj and K. Valarmathi

In Aerospace applications, the inlet tubes are used to mount strain gauge type pressure sensors on the engine under static test to measure engine chamber pressure. This paper aims…

102

Abstract

Purpose

In Aerospace applications, the inlet tubes are used to mount strain gauge type pressure sensors on the engine under static test to measure engine chamber pressure. This paper aims to focus on the limitations of the inlet tube and its design aspects to serve better in the static test environment. The different sizes of the inlet tubes are designed to meet the static test and safety requirements. This paper presents the performance evaluation of the designed inlet tubes with calibration results and the selection criteria of the inlet tube to measure combustion chamber pressure with the specified accuracy during static testing of engines.

Design/methodology/approach

Two sensors, specifically, one cavity type pressure sensor with the inlet tube of range 0-6.89 MPa having natural frequency of the diaphragm 17 KHz and another flush diaphragm type pressure sensor of the same range having −3 dB frequency response, 5 KHz are mounted on the same pressure port of the engine under static test to study the shortcomings of the inlet tube. The limitations of the inlet tube have been analyzed to aid the tube design. The different sizes of inlet tubes are designed, fabricated and tested to study the effect of the inlet tube on the performance of the pressure sensor. The dynamic calibration is used for this purpose. The dynamic parameters of the sensor with the designed tubes are calculated and analyzed to meet the static test requirements. The diaphragm temperature test is conducted on the representative hardware of pressure sensor with and without inlet tube to analyze the effect of the inlet tube against the temperature error. The inlet tube design is validated through the static test to gain confidence on measurement.

Findings

The cavity type pressure sensor failed to capture the pressure peak, whereas the flush diaphragm type pressure sensor captured the pressure peak of the engine under a static test. From the static test data and dynamic calibration results, the bandwidth of cavity type sensor with tube is much lower than the required bandwidth (five times the bandwidth of the measurand), and hence, the cavity type sensor did not capture the pressure peak data. The dynamic calibration results of the pressure sensor with and without an inlet tube show that the reduction of the bandwidth of the pressure sensor is mainly due to the inlet tube. From the analysis of dynamic calibration results of the sensor with the designed inlet tubes of different sizes, it is shown that the bandwidth of the pressure sensor decreases as the tube length increases. The bandwidth of the pressure sensor with tube increases as the tube inner diameter increases. The tube with a larger diameter leads to a mounting problem. The inlet tube of dimensions 6 × 4 × 50 mm is selected as it helps to overcome the mounting problem with the required bandwidth. From the static test data acquired using the pressure sensor with the selected inlet tube, it is shown that the selected tube aids the sensor to measure the pressure peak accurately. The designed inlet tube limits the diaphragm temperature within the compensated temperature of the sensor for 5.2 s from the firing of the engine.

Originality/value

Most studies of pressure sensor focus on the design of a sensor to measure static and slow varying pressure, but not on the transient pressure measurement and the design of the inlet tube. This paper presents the limitations of the inlet tube against the bandwidth requirement and recommends dynamic calibration of the sensor to evaluate the bandwidth of the sensor with the inlet tube. In this paper, the design aspects of the inlet tube and its effect on the bandwidth of the pressure sensor and the temperature error of the measured pressure values are presented with experimental results. The calibration results of the inlet tubes with different configurations are analyzed to select the best geometry of the tube and the selected tube is validated in the static test environment.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Dong Wang, Guoyu Lin, Wei-gong Zhang, Ning Zhao and Han Pang

One of the major shortcomings in the data process of the traditional wheel force transducers (WFTs) is the theoretical errors of initial value determination. A new method to…

Abstract

Purpose

One of the major shortcomings in the data process of the traditional wheel force transducers (WFTs) is the theoretical errors of initial value determination. A new method to identify the initial values of the WFT for the solution of this problem is proposed in this paper. The paper aims to discuss these issues.

Design/methodology/approach

With this method, the initial values can be obtained by equations which are established based on multiple stops on horizontal road.

Findings

The calibration and contrast tests on the MTS calibration platform illustrate the better performance with the new method. Moreover, the real vehicle test confirms the effectiveness in practice.

Originality/value

The test results show that the new method of initial calibration has an advanced performance compared to the traditional one. In addition, it is effective in the brake test with a real vehicle.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 January 2017

Sharif Mozumder, Michael Dempsey and M. Humayun Kabir

The purpose of the paper is to back-test value-at-risk (VaR) models for conditional distributions belonging to a Generalized Hyperbolic (GH) family of Lévy processes – Variance…

Abstract

Purpose

The purpose of the paper is to back-test value-at-risk (VaR) models for conditional distributions belonging to a Generalized Hyperbolic (GH) family of Lévy processes – Variance Gamma, Normal Inverse Gaussian, Hyperbolic distribution and GH – and compare their risk-management features with a traditional unconditional extreme value (EV) approach using data from future contracts return data of S&P500, FTSE100, DAX, HangSeng and Nikkei 225 indices.

Design/methodology/approach

The authors apply tail-based and Lévy-based calibration to estimate the parameters of the models as part of the initial data analysis. While the authors utilize the peaks-over-threshold approach for generalized Pareto distribution, the conditional maximum likelihood method is followed in case of Lévy models. As the Lévy models do not have closed form expressions for VaR, the authors follow a bootstrap method to determine the VaR and the confidence intervals. Finally, for back-testing, they use both static calibration (on the entire data) and dynamic calibration (on a four-year rolling window) to test the unconditional, independence and conditional coverage hypotheses implemented with 95 and 99 per cent VaRs.

Findings

Both EV and Lévy models provide the authors with a conservative proportion of violation for VaR forecasts. A model targeting tail or fitting the entire distribution has little effect on either VaR calculation or a VaR model’s back-testing performance.

Originality/value

To the best of the authors’ knowledge, this is the first study to explore the back-testing performance of Lévy-based VaR models. The authors conduct various calibration and bootstrap techniques to test the unconditional, independence and conditional coverage hypotheses for the VaRs.

Details

The Journal of Risk Finance, vol. 18 no. 1
Type: Research Article
ISSN: 1526-5943

Keywords

Article
Publication date: 1 December 1997

Grier C.I. Lin and Tien‐Fu Lu

Presents an on‐line calibration methodology for robot relative positioning inaccuracy. This methodology eliminates the need for time‐consuming off‐line calibrations relying on…

388

Abstract

Presents an on‐line calibration methodology for robot relative positioning inaccuracy. This methodology eliminates the need for time‐consuming off‐line calibrations relying on accurate models and complicated procedures. To realize this methodology, a vision system, a 3D force/torque sensor, and control strategies involving Neural Networks (NNs) were incorporated with an industrial robot.

Details

Industrial Robot: An International Journal, vol. 24 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 May 2022

Xin Li, ZaiFu Cui, Daoheng Sun, Qinnan Chen, Gonghan He, Baolin Liu, Zhenyin Hai, Guochun Chen, Zhiyuan Jia and Zong Yao

The measurement of heat flux is of importance to the development of aerospace engine as basic physical quantities in extreme environment. Heat radiation is one of the basic forms…

Abstract

Purpose

The measurement of heat flux is of importance to the development of aerospace engine as basic physical quantities in extreme environment. Heat radiation is one of the basic forms of heat transfer phenomenon. The structure optimizing can improve the performance and infrared absorptivity of the thin film sensor.

Design/methodology/approach

This paper designed one kind of thin film heat flux sensor (HFS) with antireflective coating based on transparent conductive oxide thermopile. The introduced membrane structure is so thin that it has little impact on sensor performance. Fabrication of thin film sensors were fabricated by physical vapor deposition (PVD) process.

Findings

The steady-state and dynamic response characteristics of the HFS were investigated by calibration platform. The experimental results shown that the absorptivity of the membrane structure (for1070nm) improved compared with that before optimization. The sensitivity of heat flux gauge was 48.56 µV/ (kW/m2) and its frequency response was determined to be about 1980 Hz.

Originality/value

The thin film HFS uses thermopile based on Indium Tin Oxid and In2O3. The antireflective coating is introduced to hot endpoint of HFS to improve sensitivity on laser thermal source. The infrared optical properties of membrane layer structure were investigated. The steady-state and the transient response characteristics of the heat flux sensor were also investigated.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 September 2019

Aitor Erkoreka, Ivan Flores-Abascal, Cesar Escudero, Koldo Martin, Jose Antonio Millan and Jose Maria Sala

Understanding the dynamic hygrothermal behavior of building elements is very important to ensure the optimal performance of buildings. The Laboratory for Quality Control in…

Abstract

Purpose

Understanding the dynamic hygrothermal behavior of building elements is very important to ensure the optimal performance of buildings. The Laboratory for Quality Control in Buildings of the Basque Government tested a flat roof designed by a construction company that developed a building to be constructed using prefabricated modules. This is a five to eight floor building with ventilated façade and a flat roof covered by gravel with the possibility of changing it to a green cover. The paper aims to discuss this issue.

Design/methodology/approach

The interest of this research was threefold. The first objective was to accurately test, under real dynamic weather conditions, the roof design in a PASLINK test cell to obtain the U-value and the thermal capacitance of the different roof layers, and of the roof as a whole, through the precise calibration of resistance-capacitance mathematical models of the roof. Based on the parameters and experimental information of these calibrated models, a second goal was to calibrate and validate a Wufi model of the roof.

Findings

This second calibrated model was then used to simulate the dynamic hygrothermal behavior of the roof, obtaining the roof’s hourly thermal demand per square meter for a whole year in different locations considered in the Spanish Building Code. These simulations also permitted the authors to study the risk of condensation and mold growth of the tested component under different climatic conditions.

Originality/value

The successful combination of the PASLINK method to calibrate the Wufi hygrothermal model is the main novelty of this research.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Article
Publication date: 1 October 2000

118

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 72 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 17 November 2023

Yujie Ren and Hai Chi

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Abstract

Purpose

The brake controller is a key component of the locomotive brake system. It is essential to study its safety.

Design/methodology/approach

This paper summarizes and analyzes typical faults of the brake controller, and proposes four categories of faults: position sensor faults, microswitch faults, mechanical faults and communication faults. Suggestions and methods for improving the safety of the brake controller are also presented.

Findings

In this paper, a self-judgment and self-learning dynamic calibration method is proposed, which integrates the linear error of the sensor and the manufacturing and assembly errors of the brake controller to solve the output drift. This paper also proposes a logic for diagnosing and handling microswitch faults. Suggestions are proposed for other faults of brake controller.

Originality/value

The methods proposed in this paper can greatly improve the usability of the brake controller and reduce the failure rate.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 12 December 2017

Yu Tian, Jun Zhang, Zongjin Ren, Wei Liu, Zhenyuan Jia and Qingbing Chang

This paper aims to improve calibration and force measurement accuracy of multi-sensors’ piezoelectric dynamometer used in thrust measurement of rocket/air vehicle engine.

Abstract

Purpose

This paper aims to improve calibration and force measurement accuracy of multi-sensors’ piezoelectric dynamometer used in thrust measurement of rocket/air vehicle engine.

Design/methodology/approach

This paper presents a mapping solution method of sensors’ outputs based on the Kirchhoff thin plate theory, builds force-deformation differential equations with specific boundary conditions, uses finite difference (FD) method to solve the equations and analyzes outputs in offset loading forces in four-sensor square layout in main direction. The resultant force deviations calculated by the Kirchhoff theory are optimized with sequence quadratic program (SQP) method, and a calibration method of multiple loading points (MLP) based on the Kirchhoff theory is presented. Experiments of static calibration and verification are complemented to contrast the novel and single loading point (SLP) calibration method.

Findings

Experiments of static calibration and its verification show that at a loading force of 5,000N, the average resultant force deviations with MLP is 17.87N (0.35% FS) compared with single loading point method 26.45N (0.53% FS), improving calibration and measurement precision.

Originality value

A novel calibration method with MLP is presented. Force distributions of multiple sensors of main direction in piezoelectric dynamometer with offset loading force are solved with the Kirchhoff theory. The resultant force deviations calculated by Kirchhoff theory are optimized with the SQP method.

1 – 10 of over 3000