Search results

1 – 10 of 506
Article
Publication date: 19 December 2018

Vijayanand Rajendra Boopathy, Anantharaman Sriraman and Arumaikkannu G.

The present work aims in presenting the energy absorbing capability of different combination stacking of multiple materials, namely, Vero White and Tango Plus, under static and…

Abstract

Purpose

The present work aims in presenting the energy absorbing capability of different combination stacking of multiple materials, namely, Vero White and Tango Plus, under static and dynamic loading conditions.

Design/methodology/approach

Honeycomb structures with various multi-material stackings are fabricated using PolyJet 3D printing technique. From the static and dynamic test results, the structure having the better energy absorbing capability is identified.

Findings

It is found that from the various stacking combinations of multiple materials, the five-layered (5L) sandwich multi-material honeycomb structure has better energy absorbing capability.

Practical implications

This multi-material combination with a honeycomb structure can be used in the application of crash resistance components such as helmet, knee guard, car bumper, etc.

Originality/value

Through experimental work, various multi-material honeycomb structures and impact resistance of single material clearly indicated the inability to absorb impact loads which experiences a maximum force of 5,055.24 N, whereas the 5L sandwich multi-material honeycomb structure experiences a minimum force of 1,948.17 N, which is 38.5 per cent of the force experienced by the single material. Moreover, in the case of compressive resistance, 2L sandwich multi-material honeycomb structure experiences a maximum force of 5,887.5 N, whereas 5L sandwich multi-material honeycomb structure experiences a minimum force of 2,410 N, which is 40.9 per cent of the force experienced by two-layered (2L) sandwich multi-material honeycomb structure. In this study, the multi-material absorbed most of the input energy and experienced minimum force in both compressive and impact loads, thus showing its energy absorbing capability and hence its utility for structures that experience impact and compressive loads. A maximum force is required to deform the single and 2L material in terms of impact and compressive load, respectively, under maximum stiffness conditions.

Details

Rapid Prototyping Journal, vol. 25 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 January 2017

Zhengyan Zhang and Sanjay Joshi

This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of…

1323

Abstract

Purpose

This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of complex heterogeneous material allowing for the additive manufacturing-based build of a wide range of objects that are limited only by the constraints of the manufacturing process.

Design/methodology/approach

Initial 3D CAD models are created with multiple and functionally graded materials using an assembly model to create a single part with well-defined material regions. These models are then sliced to create the geometry and material boundaries required for each layer to enable layer-by-layer fabrication.

Findings

A representation schema is proposed to add multi-material attributes to a sliced file for additive manufacturing using the combination of material index and material geometry region. A modified common layer interface data format is proposed to allow for representation of a wide range of homogeneous and heterogeneous material for each slice. This format allows for a generic input for tool paths to be generated for each material of the layer.

Originality/value

The proposed approach allows for slice data representation for any material combination that can be defined mathematically. Three different material types, namely, composite material, functionally graded materials and combination thereof, are provided as examples. These data form the input data for subsequent tool path planning.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 February 2021

Waseem Arif, Hakim Naceur, Sajjad Miran, Nicolas Leconte and Eric Markiewicz

The purpose of this study is to develop an elasto-plastic multi-material shell model by which finite element analysis of laser welded joints is carried out at the interface of the…

Abstract

Purpose

The purpose of this study is to develop an elasto-plastic multi-material shell model by which finite element analysis of laser welded joints is carried out at the interface of the heat-affected zone and base material.

Design/methodology/approach

The multi-material shell model is implemented on the simple cantilever and double cantilever welded plates to examine the efficiency of the developed model.

Findings

By reducing the computational time approximately 20 times with the developed model, the results obtained in the form of von Mises stress and equivalent plastic strain are found in good agreement as compared with the reference solid model.

Originality/value

The accurate and fast prediction of the stresses and strains in the laser welded joints, and the developed multi-material model is helpful to simulate complex industrial welded structures.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 16 October 2018

Ranvijay Kumar, Rupinder Singh and Ilenia Farina

Three-dimensional printing (3DP) is an established process to print structural parts of metals, ceramic and polymers. Further, multi-material 3DP has the potentials to be a…

6657

Abstract

Purpose

Three-dimensional printing (3DP) is an established process to print structural parts of metals, ceramic and polymers. Further, multi-material 3DP has the potentials to be a milestone in rapid manufacturing (RM), customized design and structural applications. Being compatible as functionally graded materials in a single structural form, multi-material-based 3D printed parts can be applied in structural applications to get the benefit of modified properties.

Design/methodology/approach

The fused deposition modelling (FDM) is one of the established low cost 3DP techniques which can be used for printing functional/ non-functional prototypes in civil engineering applications.

Findings

The present study is focused on multi-material printing of primary recycled acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and high impact polystyrene (HIPS) in composite form. Thermal (glass transition temperature and heat capacity) and mechanical properties (break load, break strength, break elongation, percentage elongation at break and Young’s modulus) have been analysed to observe the behaviour of multi-material composites prepared by 3DP. This study also highlights the process parameters optimization of FDM supported with photomicrographs.

Originality/value

The present study is focused on multi-material printing of primary recycled ABS, PLA and HIPS in composite form.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 November 2022

Qingyang Liu, Ziyang Zhang, Denizhan Yavas, Wen Shen and Dazhong Wu

Understanding the effect of process parameters on interfaces and interfacial bonding between two materials during multi-material additive manufacturing (MMAM) is crucial to the…

Abstract

Purpose

Understanding the effect of process parameters on interfaces and interfacial bonding between two materials during multi-material additive manufacturing (MMAM) is crucial to the fabrication of high-quality and strong multi-material structures. The purpose of this paper is to conduct an experimental and statistical study to investigate the effect of process parameters of soft and hard materials on the flexural behavior of multi-material structures fabricated via material extrusion-based MMAM.

Design/methodology/approach

Sandwich beam samples composed of a soft core and hard shells are fabricated via MMAM under different printing conditions. A design of experiments is conducted to investigate the effect of the print speed and nozzle temperature on the flexural behavior of soft-hard sandwich beams. Analysis of variance and logistic regression analysis are used to analyze the significance of each process parameter. The interfacial morphology of the samples after the flexural tests is characterized. Thermal distributions during the MMAM process are captured to understand the effect of process parameters on the flexural behavior based on inter-bonding formation mechanisms.

Findings

Experimental results show that the soft-hard sandwich beams exhibited two different failure modes, including shell failure and interfacial failure. A transition of failure modes from interfacial failure to shell failure is observed as the nozzle temperatures increase. The samples that fail because of interfacial cracking exhibit a pure adhesive failure because of weak interfacial fracture properties. The samples that fail because of shell cracking exhibit a mixed adhesive and cohesive failure. The flexural strength and modulus are affected by the nozzle temperature for the hard material and the print speeds for both hard and soft materials significantly.

Originality/value

This paper first investigates the effect of process parameters for soft and hard materials on the flexural behavior of additively manufactured multi-material structures. Especially, the ranges of the selected process parameters are distinct, and the effect of all possible combinations of the process parameters on the flexural behavior is characterized through a full factorial design of experiments. The experimental results and conclusions of this paper provide guidance for future research on improving the interfacial bonding and understanding the failure mechanism of multi-material structures fabricated by MMAM.

Article
Publication date: 1 March 2001

Dan Qiu, Noshir A. Langrana, Stephen C. Danforth, Ahmad Safari and Mohsen Jafari

To fabricate high quality parts, and to make the development generic yet compatible with the in‐house hardware, a virtual simulation system has been developed, and an in‐house…

Abstract

To fabricate high quality parts, and to make the development generic yet compatible with the in‐house hardware, a virtual simulation system has been developed, and an in‐house intelligent multi‐material toolpath generation system has been under development. This new development includes the issues such as multiple fill‐toolpaths for the same material, interface mismatch between adjacent materials and the intelligent toolpath features for machine control. After the multi‐material toolpath file generated by the in‐house software, the existing virtual graphical simulation as well as well selected part fabrication experiments were used to validate it. Based on the authors’ ongoing research about multi‐material layered manufacturing, it was determined that the build characteristic was heavily dependent on the material being used. Therefore, it was important to develop the hardware/software that will accommodate this requirement.

Details

Rapid Prototyping Journal, vol. 7 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 February 2021

Furkan Ulu, Ravi Pratap Singh Tomar and Ram Mohan

PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed…

Abstract

Purpose

PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed structural parts. This paper aims to investigate the processing and mechanical characteristics of composite material configurations formed from soft and hard materials with different distributions and sizes via voxel digital print design.

Design/methodology/approach

Voxels are extruded representations of pixels and represent different material information similar to each pixel representing colors in digital images. Each geometric region of a digitally designed part represented by a voxel can be printed with a different material. Multi-material composite part configurations were formed and rapidly prototyped using a PolyJet printer Stratasys J750. A design of experiments composite part configuration of a soft material (Tango Plus) within a hard material matrix (Vero Black) was studied. Composite structures with different hard and soft material distributions, but at the same volume fractions of hard and soft materials, were rapidly prototyped via PolyJet printing through developed Voxel digital printing designs. The tensile behavior of these formed composite material configurations was studied.

Findings

Processing and mechanical behavior characteristics depend on materials in different regions and their distributions. Tensile characterization obtained the fracture energy, tensile strength, modulus and failure strength of different hard-soft composite systems. Mechanical properties and behavior of all different composite material systems are compared.

Practical implications

Tensile characteristics correlate to digital voxel designs that play a critical role in additive manufacturing, in addition to the formed material composition and distributions.

Originality/value

Results clearly indicate that multi-material composite systems with various tensile mechanical properties could be created using voxel printing by engineering the design of material distributions, and sizes. The important parameters such as inclusion size and distribution can easily be controlled within all slices via voxel digital designs in PolyJet printing. Therefore, engineers and designers can manipulate entire morphology and material at each voxel level, and different prototype morphologies can be created with the same voxel digital design. In addition, difficulties from AM process with voxel printing for such material designs is addressed, and effective digital solutions were used for successful prototypes. Some of these difficulties are extra support material or printing the part with different dimension than it designed to achieve the final part dimension fidelity. Present work addressed and resolved such issued and provided cyber based software solutions using CAD and voxel discretization. All these increase broad adaptability of PolyJet AM in industry for prototyping and end-use.

Article
Publication date: 20 April 2012

Kun Sun, Dichen Li, Haihua Wu, Minjie Wang and Xiaoyong Tian

The purpose of this paper is to bring up the concept of multi‐material electromagnetic band‐gap structure (EBGs) and develop a method for its fabrication. Meanwhile, its microwave…

Abstract

Purpose

The purpose of this paper is to bring up the concept of multi‐material electromagnetic band‐gap structure (EBGs) and develop a method for its fabrication. Meanwhile, its microwave properties were studied and compared with the traditional EBGs consisting of two kinds of material.

Design/methodology/approach

Stereolithography (SL) and gel casting were used to fabricate 3D multi‐material EBGs. Resin mold was designed and fabricated based on SL process, slurries loaded with 55vol per cent Al2O3 and 55vol per cent TiO2, respectively, were prepared, and using gel casting, multilayer EBGs with diamond structure were fabricated. T/R method was used to obtain the characteristic parameter S21 of the EBGs; meanwhile, characters of their band structure were studied based on plane wave expansion method.

Findings

The fabricated EBGs with a TiO2‐resin‐air structure showed a band gap from 11.7 GHz to 16.0 GHz along <1, 1, 0> direction; the EBGs with a TiO2‐resin‐Al2O3 structure showed a band gap from 11.4 GHz to 11.9 GHz along <1, 1, 0> direction. Both of them agreed well with the simulation result. Also, through the study of multi‐material EBGs' microwave properties, it could be seen that this structure was a good approach to adjust the band gap.

Originality/value

With the concept of multi‐material EBG structure brought up, multilayer 3D EBGs were designed and fabricated based on SL combined with gel casting. It could be seen that multi‐material EBGs was a good approach to adjust the band gap. Also, the fact that the testing result matched the simulation validates the feasibility of the process.

Article
Publication date: 17 August 2021

Mingkang Zhang, Yongqiang Yang, Meizhen Xu, Jie Chen and Di Wang

The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM).

Abstract

Purpose

The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM).

Design/methodology/approach

The Diamond structure was designed by the triply periodic minimal surface function in MATLAB, and multi-materials porous structures were manufactured by SLM. Compression tests were applied to analyze the anisotropy of mechanical properties of multi-materials porous structures.

Findings

Compression results show that the multi-materials porous structure has a strong anisotropy behavior. When the compression force direction is parallel to the material arrangement, multi-materials porous structure was compressed in a layer-by-layer way, which is the traditional deformation of the gradient structure. However, when the compression force direction is perpendicular to the material arrangement, the compression curves show a near-periodic saw-tooth waveform characteristic, and this kind of structure was compressed consistently. It is demonstrated that the combination with high strength brittle material and low strength plastic material improves compression mode, and plastic material plays a role in buffering fracture.

Originality/value

This research provides a new method for the design and manufacturing of multi-materials porous structures and an approach to change the compression behavior of the porous structure.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 506