Search results

1 – 10 of 38
Article
Publication date: 30 March 2023

Flora Bougiatioti, Eleni Alexandrou and Miltiadis Katsaros

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal…

Abstract

Purpose

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal Insulation Code of 1981. The article focuses on existing, typical residences built after 1920, which are found mostly in suburban areas and settlements all around Greece. The purpose of the research is to evaluate the effect of simple bioclimatic interventions focused on the improvement of their diurnal, inter-seasonal and annual thermal performance.

Design/methodology/approach

The applied strategies include application of thermal insulation in the building shell and openings, passive solar systems for the heating period and shading and natural ventilation for the summer period. The effect of the strategies is analysed with the use of building energy analysis. The simulation method was selected because it provides the possibility of parametric analysis and comparisons for different proposals in different orientations.

Findings

The results show that the increased thermal mass of the construction is the most decisive parameter of the thermal behaviour throughout the year.

Research limitations/implications

The typical residences under investigation are often found in urban and/or suburban surroundings. These mostly refer to free-standing buildings situated, which, in many cases, do not have the disadvantages and limitations that the geometrical characteristics of densely built urban locations impose on incident solar radiation (e.g. overshadowing during the winter) and air circulation (e.g. reduce natural ventilation during the summer). Nevertheless, even in these cases, the surrounding built environment may also have relevant negative effects, which were not taken under consideration and could be included in further, future research that will include the effect of various orientations, as well as of neighbouring buildings.

Practical implications

Existing residences built prior to the first Thermal Insulation Code (1981) form an important part of the building stock. Consequently their energy upgrade could contribute to significant conventional energy savings for heating and cooling, along with the inter-seasonal improvement of interior thermal comfort conditions.

Social implications

The proposed interventions can improve thermal comfort conditions and lead to a reduction of energy consumption for heating and cooling, which is an important step against energy poverty and the on-going energy crisis.

Originality/value

The proposed interventions only involve the building envelope and are simple with relatively low cost.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 31 August 2023

Uche Emmanuel Edike, Olumide Afolarin Adenuga, Daniel Uwumarogie Idusuyi and Abdulkabir Adedamola Oke

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks…

Abstract

Purpose

The purpose of this study is to advance the application of pulverised cow bone ash (PCBA) as a partial replacement of cement in soil stabilisation for the production of bricks. The study investigated the impact of PCBA substitution on the characteristic strength of clay bricks under variant curing media.

Design/methodology/approach

Dried cow bones were pulverised, and an energy-dispersive X-ray fluorescence test was conducted on PCBA samples to determine the chemical constituents and ascertain the pozzolanic characteristics. Ordinary Portland cement (OPC) and PCBA were blended at 100%, 75%, 50%, 25% and 0% of cement substitution by mass to stabilise lateritic clay at 10% total binder content for the production of bricks. The binder-to-lateritic clay matrixes were used to produce clay bricks and cylinders for compressive and splitting tensile strength tests, respectively.

Findings

The study found that PCBA and OPC have similar chemical compositions. The strength of the clay bricks increased with curing age, and the thermal curing of clay bricks positively impacted the strength development. The study established that PCBA is a suitable substitute for cement, up to 25% for stabilisation in clay brick production.

Practical implications

Construction stakeholders can successfully use a PCBA-OPC binder blend of 1:3 to stabilise clay at 10% total binder content for the production of bricks. The stabilised clay bricks should be cured at an elevated temperature of approximately 90°C for 48 h to achieve satisfactory performance.

Originality/value

The PCBA-OPC binder blend provides adequate soil stabilisation for the production of clay bricks and curing the clay bricks at elevated temperature. This aspect of the biomass/OPC binder blend has not been explored for brick production, and this is important for the reduction of the environmental impacts of cement production and waste from abattoirs.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 May 2023

Rakesh Sai Kumar Mandala and R. Ramesh Nayaka

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also…

Abstract

Purpose

This paper aims to identify modern construction techniques for affordable housing, such as prefabrication and interlocking systems, that can save time and cost while also providing long-term sustainable benefits that are desperately needed in today's construction industry.

Design/methodology/approach

The need for housing is growing worldwide, but traditional construction cannot cater to the demand due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society. This paper presented a state-of-the-art review of modern construction techniques practiced worldwide and their advantages in affordable housing construction by conducting a systematic literature review and applying the backward snowball technique. The paper reviews modern prefabrication techniques and interlocking systems such as modular construction, formwork systems, light gauge steel/cold form steel construction and sandwich panel construction, which have been globally well practiced. It was understood from the overview that modular construction, including modular steel construction and precast concrete construction, could reduce time and costs efficiently. Further enhancement in the quality was also noticed. Besides, it was observed that light gauge steel construction is a modern phase of steel that eases construction execution efficiently. Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time, which leads to faster construction than traditional formwork. However, the cost is subjected to the repetitions of the formwork. An interlocking system is an innovative approach to construction that uses bricks made of sustainable materials such as earth that conserve time and cost.

Findings

The study finds that the prefabrication techniques and interlocking system have a lot of unique attributes that can enable the modern construction sector to flourish. The study summarizes modern construction techniques that can save time and cost, enhancing the sustainability of construction practices, which is the need of the Indian construction industry in particular.

Research limitations/implications

This study is limited to identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Practical implications

Modern formwork systems such as Mivan (Aluminium Formwork) have been reported for their minimum construction time which leads to faster construction than traditional formwork.

Social implications

The need for housing is growing rapidly all over the world, but traditional construction cannot cater to the need due to insufficient time. There should be some paradigm shift in the construction industry to supply housing to society.

Originality/value

This study is unique in identifying specific modern construction techniques for time and cost savings, lean concepts and sustainability which are being practiced worldwide.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 October 2022

Deena El-Mahdy, Hisham S. Gabr and Sherif Abdelmohsen

Despite the dramatic increase in construction toward additive manufacturing, several challenges are faced using natural materials such as Earth and salt compared to the most…

Abstract

Purpose

Despite the dramatic increase in construction toward additive manufacturing, several challenges are faced using natural materials such as Earth and salt compared to the most market-useable materials in 3D printing as concrete which consumes high carbon emission.

Design/methodology/approach

Characterization and mechanical tests were conducted on 19 samples for three natural binders in dry and wet tests to mimic the additive manufacturing process in order to reach an efficient extrudable and printable mixture that fits the 3D printer.

Findings

Upon testing compressive strength against grain size, compaction, cohesion, shape, heat and water content, X-Salt was shown to record high compressive strength of 9.5 MPa. This is equivalent to old Karshif and fire bricks and surpasses both rammed Earth and new Karshif. Material flow analysis for X-Salt assessing energy usage showed that only 10% recycled waste was produced by the end of the life cycle compared to salt.

Research limitations/implications

Findings are expected to upscale the use of 3D salt printing in on-site and off-site architectural applications.

Practical implications

Findings contribute to attempts to resolve challenges related to vernacular architecture using 3D salt printing with sufficient stability.

Social implications

Benefits include recyclability and minimum environmental impact. Social aspects related to technology integration remain however for further research.

Originality/value

This paper expands the use of Karshif, a salt-based traditional building material in Egypt's desert by using X-Salt, a salt-base and natural adhesive, and investigating its printability by testing its mechanical properties to reach a cleaner and low-cost sustainable 3D printed mixture.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 3 March 2023

Ebru Ergöz Karahan, Özgür Göçer, Didem Boyacıoğlu and Pranita Shrestha

The main objective of this paper is to critically assess sustainable development in the context of Behramkale, a vernacular village in Türkiye.

Abstract

Purpose

The main objective of this paper is to critically assess sustainable development in the context of Behramkale, a vernacular village in Türkiye.

Design/methodology/approach

Vernacular Heritage Sustainable Architecture analysis framework has been adopted to understand and assess vernacular architecture and sustainable development in Behramkale.

Findings

The vernacular design of the old Behramkale settlement has shown more sustainable characteristics as compared to the new development area. Key findings show that trade-offs were made with respect to environmental and sociocultural aspects of sustainable development to achieve economic sustainability.

Research limitations/implications

Future research with more in-depth interviews would be helpful to find out the inhabitants’ response to the conservation practices.

Practical implications

Based on the research conducted, life cycle analysis and sustainable strategies of vernacular settlements can be useful tools to design, develop and improve old settlements, as well as newly established settlements.

Social implications

Key lessons learned from conservation practices can help to identify well-adapted solutions to respond to the needs of local communities in Türkiye and similar vernacular settlements in the Mediterranean region.

Originality/value

This paper critically assesses sustainable development in the context of vernacular architecture, heritage conservation and rural sustainability. Conservation practices in Türkiye are evaluated deeply as there is limited research in this field within the Mediterranean heritage conversation and sustainable development context.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 17 May 2022

Md Hamidul Islam, Md. Abu Safayet and Abdullah Al Mamun

In response to rising energy prices and growing environmental concerns, there is a growing demand for environmentally friendly building facilities. This study investigates…

Abstract

Purpose

In response to rising energy prices and growing environmental concerns, there is a growing demand for environmentally friendly building facilities. This study investigates optimizing energy consumption and improves the level of accuracy when selecting suitable materials and components with minimal impact on the overall energy consumption of buildings.

Design/methodology/approach

This study was carried out from the perspective of an educational building's energy simulation, using a validated building energy analysis tool Green Building Studio (GBS). There were eight parameters analyzed considering at least two connected variables without measuring the initial building configuration. After that, Autodesk Revit and Insight 360 were used to make similar scenarios of the best performance selections so that the general results could be compared and the initial hypothesis could be proven.

Findings

In this study, the initial building analysis showed that there was an annual energy use of 139 kBtu/sf and the estimated carbon emissions were about 156 tons/yr. After the parametric analysis, the maximum energy saving was about 32.38%, considering the best performance scenario with a reduction of CO2 emissions of around 28.85%.

Originality/value

The outcome of this study will help Bangladeshi architect/designers to make appropriate decisions regarding the selection of suitable building materials and components at the initial stage of any project in terms of the energy consumption aspects. In addition, energy-efficient buildings provide cleaner combustion and better circulation than traditional buildings, that is why they reduce indoor air pollution, maintaining a safe, healthy and sustainable environment for future generations.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 10 November 2023

Hayford Pittri, Kofi Agyekum, Edward Ayebeng Botchway, João Alencastro, Olugbenga Timo Oladinrin and Annabel Morkporkpor Ami Dompey

The design for deconstruction (DfD) technique, a contemporaneous solution to demolition by optimizing disassembly activities to enable reuse, has recently emerged with several…

Abstract

Purpose

The design for deconstruction (DfD) technique, a contemporaneous solution to demolition by optimizing disassembly activities to enable reuse, has recently emerged with several promises to promote the circular economy. However, little attention has been given to its implementation among design professionals, especially in the Global South. Therefore, this study aims to explore the drivers for DfD implementation among design professionals in the Ghanaian construction industry (GCI).

Design/methodology/approach

The study adopted a mixed research approach (explanatory sequential design) with an initial quantitative instrument phase, followed by a qualitative data collection phase. Data from the survey were analyzed using mean, standard deviation, one-sample t-Test, and normalization value (NV) test after a review of pertinent literature. These data were then validated through semistructured interviews with ten design professionals with in-depth knowledge of DfD.

Findings

The findings revealed that although all ten drivers are important, the eight key drivers for the DfD implementation were identified as, in order of importance, “Availability of computer software applications regarding DfD,” “Inclusion of DfD in the formal education of design professionals,” “Increasing public awareness of the concept of DfD,” “Organizing workshops/seminars for design professionals on the concept of DfD,” “Availability of DfD training,” “Regulation regarding DfD,” “Industry guidance regarding DfD” and “Establishing a market for salvaged construction components.”

Originality/value

This study's findings provide insights into an under-investigated topic in Ghana and offer new and additional information and insights into the current state-of-the-art on the factors that drive DfD implementation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 28 April 2023

Mohamed Beneldjouzi, Mohamed Hadid and Nasser Laouami

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI…

Abstract

Purpose

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI effects in conjunction with local soil condition effects on the seismic response of typical multistory low- to mid-rise–reinforced concrete (RC) buildings resting on Algerian regulatory design sites through a global explicit transfer function (TF).

Design/methodology/approach

A preliminary quantification of SSI effects associated with site effects is carried out through a frequency-domain solution based on the concept of rock-to-soil surface displacement TF performed for each design site category. It results from the combination of the TFs of structure, foundation and soil and reflects how seismic waves are amplified due to changes in the geological contrast between the rock and overlying soil deposits. As well, response modification factors, denoting displacement ratios of the building responses within the flexible and site-structure conditions with respect to the fixed-base one, are carried out.

Findings

In the context of Algerian seismic regulation, the study provides a clear vision of how and when site or SSI effects are expected to be influential, as opposed to the fixed-base hypothesis still retained by the current regulation. This helps engineers to be aware of the extent of the expected seismic damage.

Research limitations/implications

The research applies to low- to mid-rise RC buildings within the Algerian seismic regulation, but it may also be expanded to other examples that fall under other seismic regulations.

Practical implications

The response modification ratio is a quantitative approach to assessing response fluctuations. It draws attention to how the roof level drift varies depending on the condition. These results can be used as numerical parameters in structural seismic design when the structure is comparable because they provide useful information about how the two phenomena interact with the structure.

Originality/value

The study goes beyond particular situations dealing with site specific and offers effective indicators and quantitative evaluation of combined site and SSI effects according to the current national seismic provisions, where no indication about site or SSI effects exists.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 June 2023

Tsu Yian Lee, Faridahanim Ahmad and Mohd Adib Sarijari

Activity sampling is a technique to monitor onsite labourers' time utilisation, which can provide helpful information for the management level to implement suitable labour…

Abstract

Purpose

Activity sampling is a technique to monitor onsite labourers' time utilisation, which can provide helpful information for the management level to implement suitable labour productivity improvement strategies continuously. However, there needs to be a review paper that compiles research on activity sampling studies to give readers a thorough grasp of the research trend. Hence, this paper aims to investigate the activity sampling techniques applied in earlier research from the angles of activity categories formation, data collection methods and data analysis.

Design/methodology/approach

The method used in this paper is a systematic review guided by the PRISMA framework. The search was conducted in Scopus and Web of Science. The inclusion and exclusion criteria were applied, selecting 70 articles published between 2011 and 2022 for data extraction and analysis. The analysis method involved a qualitative synthesis of the findings from the selected articles.

Findings

Activity sampling is broadly divided into four stages: targeting trade, determining activity categories, data collection and data analysis. This paper divides the activity categories into three levels and classifies the data collection methods into manual observation, sensor-based activity sampling and computer vision-based activity sampling. The previous studies applied activity sampling for two construction management purposes: labour productivity monitoring and ergonomic safety monitoring. This paper also further discusses the scientific research gaps and future research directions.

Originality/value

This review paper contributes to the body of knowledge in construction management by thoroughly understanding current state-of-the-art activity sampling techniques and research gaps.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 30 May 2023

Abdelhamid Hati and Amina Abdessemed-Foufa

The protection of industrial heritage emerged as a major concern when those buildings and installations representative of the industry, became at risk. North Africa, considered…

Abstract

Purpose

The protection of industrial heritage emerged as a major concern when those buildings and installations representative of the industry, became at risk. North Africa, considered the geographical gateway to European countries, experienced enormous industrial activity during the French colonial era. Industrial buildings such as the flour mills, were built during this era of colonial rule. Today, a lack of legislation concerning industrial heritage has left this type of buildings with no protection, leading this paper to a preservation process. The aim of this paper is to locate and identify the flour mills of the 19th and 20th centuries in Algeria.

Design/methodology/approach

This research consists of cross-referencing data from archived documents against the geographical location.

Findings

The results obtained are the first step in the process of preservation. The success of this research can be summarized as follows: identification of 88.46% of the flour mills in Algeria by means of the inventory data collected, and their location, with the use of a crisp logic, the remaining 9.62% with the use of fuzzy logic by the attribution of a “fuzzy radius” with a total localization and identification of 98.08%.

Originality/value

The use of both crisp (Boolean) and fuzzy logic as part of the geographical localization method.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

1 – 10 of 38