Search results

1 – 10 of over 2000
Article
Publication date: 14 September 2015

Hüsamettin Kus and Duran Altiparmak

– The purpose of this paper is to investigate the effect of fly ash content on the friction–wear performance of bronze-based brake lining material.

Abstract

Purpose

The purpose of this paper is to investigate the effect of fly ash content on the friction–wear performance of bronze-based brake lining material.

Design/methodology/approach

In this study, bronze-based brake linings containing 0-12 weight per cent fly ash were produced by the hot-pressing process. The friction-wear properties of the unreinforced bronze matrix brake lining material and fly ash reinforced samples were investigated using a Chase-type friction tester. The hardness and density of the samples were also determined. The microstructures and friction surfaces of the samples were examined using scanning electron microscopy.

Findings

The experimental results showed that the fly ash content significantly affects the friction-wear properties of the brake lining material. It was found that the friction coefficient increases with the increase in the fly ash content for the brake lining materials studied. Moreover, the mass losses in the wear test were lower for the brake linings containing over 4 weight per cent fly ash than unreinforced bronze-based lining material.

Originality/value

This study has proven to be useful in exploring fly ash particles as low cost reinforcing materials in improving the friction–wear performance of bronze-based brake lining material. In addition, the use of fly ash particles in the manufacture of brake lining materials contributes to reducing the production cost of brake linings and to a sustainable environment.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2016

Ertugrul Durak and Hakan Ali Yurtseven

This paper aims to design and manufacture a wear-test rig performing reciprocating movement that is more relevant to the elevator brake system. Also, a sample test result that was…

Abstract

Purpose

This paper aims to design and manufacture a wear-test rig performing reciprocating movement that is more relevant to the elevator brake system. Also, a sample test result that was conducted in this experimental set-up is presented to evaluate the tribological properties of the brake linings of the elevator system that are activated in emergencies.

Design/methodology/approach

The brake linings are some of the most important security elements in elevators. The friction and wear properties of these brake linings have great importance for both safety and comfort. Elevator brake linings are often used in conjunction with guided rails under dry and boundary lubrication conditions. Therefore, friction coefficient and wear types occurring in the brake linings may be different. The tribological properties of the brake lining material in the literature are generally identified using a pin-on-disc wear-tester. The pin is contacted by rotating a disc in this wear-test rig. However, as the brake linings and guide rails do not have a reciprocating movement (linear translational motion) on each other, this wear-test rig is not suitable for brake linings and guide rails in the elevator system.

Findings

A sample test result that was conducted in this experimental set-up is presented to evaluate the tribological properties of the brake linings of the elevator system that are activated in emergencies. In these experiments, three different brake lining materials that are widely used in the elevator car guide rails in Turkey were tested under different speeds and loads.

Originality/value

The paper provides information about how to evaluate the tribological properties of the brake linings of the elevator system that are activated in emergencies. Also, it offers practical help for the manufacturer and researcher in the elevator sector.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 February 2012

Yan Yin, Jiusheng Bao and Lei Yang

The purpose of this paper is to find the variations of brake lining's frictional performance with braking conditions, and their influence on the braking safety and reliability of…

Abstract

Purpose

The purpose of this paper is to find the variations of brake lining's frictional performance with braking conditions, and their influence on the braking safety and reliability of automobiles.

Design/methodology/approach

As the semimetal brake lining is widely used currently in automobiles, it was selected as the experimental material. By simulating the braking conditions and environment of automobiles, some tribological experiments of the brake lining were investigated on the X‐DM friction tester, when it is paired with the friction disc made of gray cast iron. The influence of braking pressure, sliding velocity and surface temperature on the friction coefficient and its stability coefficient were studied in depth through experiments.

Findings

The friction coefficient decreases gradually with the increasing of braking pressure and sliding velocity when the surface temperature is naturally rising. It rises first then falls with the surface temperature rising and the maximal value appears at nearly 200°C. The stability of friction coefficient decreases obviously when the sliding velocity exceeds 30 m/s, the braking pressure exceeds 1.8 MPa and the surface temperature is over 200°C. Based on the experimental results, the authors consider that it is not reliable to execute an emergency braking only by rising the braking pressure when the automobile is driving with a high velocity. In order to reduce the bad influence of high temperature on frictional performance, some effective actions should be taken for cooling the friction disc. What is more, special attention should be paid to the decreasing of frictional stability during the braking with high velocity, pressure and temperature.

Originality/value

This paper studies the influence of braking conditions on friction coefficient and its stability of the semimetal brake lining for automobiles. It is believed that this research may have some actual guidance for enhancing the braking safety and reliability of automobiles.

Article
Publication date: 8 February 2016

ilker Sugozu, ibrahim mutlu and Kezban Banu Sugozu

The purpose of this paper is to investigate use of colemanite (C) upon friction and wear performance of automotive brake lining. Brake lining production with the boron product…

Abstract

Purpose

The purpose of this paper is to investigate use of colemanite (C) upon friction and wear performance of automotive brake lining. Brake lining production with the boron product colemanite addition and braking characterization investigated for development of non-asbestos organic (NAO) brake lining because of negative effects on human health and environmental hazard of asbestos containing linings. During the braking, brake lining is warmed up extremely due to friction, and the high temperature causes to decreasing of breaking performance. Colemanite has high melting temperature, and this makes this material valuable for brake lining.

Design/methodology/approach

This study investigated the effect of colemanite (C) upon friction and wear performance of automotive brake lining. Based on a simple experimental formulation, different amounts of boron product colemanite were used and then evaluated using a friction assessment and screening test. In these specimens, half of the samples (shown with H indices) were heat treated in 4 h at 180°C temperature. Friction coefficient, wear rate and scanning electron microscope for friction surfaces were used to assess the performance of these samples.

Findings

The results of test showed that colemanite can substantially improve properties of friction materials. The friction coefficient of friction materials modified with colemanite varies steadily with the change of temperature, and the wearing rate of friction materials is relatively low by using colemanite. Heat treatment-applied samples (CH) have provided a higher and stable friction coefficient. These results indicate that colemanite has ideal application effect in various friction materials.

Originality/value

This paper fulfils an identified information and offers practical help to the industrial firms working with brake lining and also to the academicians working on wear of materials. Parallel results have been presented between previously reported and present study, in view of brake characteristics and wear resistance. Use of the lower cost and productive organic sources of material are the main improvement of the present study.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 June 2011

Rukiye Ertan and Nurettin Yavuz

The purpose of this paper is to investigate the role of solid lubricants (graphite, coke, ZnS) on brake performance.

1005

Abstract

Purpose

The purpose of this paper is to investigate the role of solid lubricants (graphite, coke, ZnS) on brake performance.

Design/methodology/approach

In this study, the tribological and surface characteristic of non‐asbestos organic type brake friction materials containing three different solid lubricants (graphite, coke, and ZnS) in different proportions were examined and evaluated experimentally. The coefficient of friction (COF) and wear behavior of the samples were tested on a chase‐type friction tester, and particular emphases were given to the effect of temperature and number of braking cycles on the COF. Each of the lubricants was added to the mixtures in different amounts and seven different brake linings were manufactured, provided that the total amount of solid lubricants and other ingredients were not changed. The worn surfaces of the specimens were analyzed using a scanning electron microscope with energy‐dispersive X‐ray microanalysis.

Findings

The experimental results indicate that graphite has a positive effect on the tribological properties of brake linings. However, brake linings containing higher concentrations of ZnS and coke showed an unstable friction coefficient relationship with the temperature and number of braking cycles. The formation of friction layers was detected on the friction surface of these samples, which indicates that an increase in coke and ZnS content increases the discontinuous and unstable friction film areas.

Originality/value

This paper fulfils the effects of solid lubricants (graphite, coke, ZnS) in brake friction materials with detailed tests and analysis.

Details

Industrial Lubrication and Tribology, vol. 63 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 September 2014

Ilker Sugozu, Ibrahim Can and Cengiz Oner

The purpose of this paper is to investigate use of calabrian pine (pinus brutia) cone (CPC) dust along with borax (BX) to assess the effect of friction coefficient. Despite the…

Abstract

Purpose

The purpose of this paper is to investigate use of calabrian pine (pinus brutia) cone (CPC) dust along with borax (BX) to assess the effect of friction coefficient. Despite the number of research studies completed on the mechanism of friction in automotive brake lining materials, the phenomenon is still not fully understood. Complex mechano-chemical processes occurring on the friction interface of a composite friction material make it difficult to understand the correlation between the formulation of brake lining and the frictional performance.

Design/methodology/approach

In this study, the use of CPC dust along with BX has been investigated for assessing the effect on friction coefficient. CPC has resin in it. BX is a boron production which is widely used in boron glass production and in ceramic industry for increasing the heat- resistant and -forming abrasion resistant. Newly formulated brake lining material with five different ingredients has been tested under Friction Assessment and Screening Test. Friction coefficient, wear rate and scanning electron microscope for friction surface were examined to assess the performance of these samples.

Findings

Analysis of the experimental results shows that the brake lining material containing CPC and BX significantly improved the stability of the friction coefficient, fade and wear resistance.

Originality/value

Several investigations have been conducted to use different materials in brake pads. The brake pad standards have been provided in previous studies, as well as the aims for economical and sustainable production. In the present study, production of brake pads by CPC dust and BX has been executed. Parallel results have been presented between previously reported and present study, in view of brake characteristics and wear resistance. Use of the lower cost and productive organic sources of material are the main improvement of the present study.

Details

Industrial Lubrication and Tribology, vol. 66 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 June 2018

Banu Sugözü

The purpose of this study is to investigate the potential of fly ash in automotive brake lining materials.

Abstract

Purpose

The purpose of this study is to investigate the potential of fly ash in automotive brake lining materials.

Design/methodology/approach

Three brake linings containing fly ash (36, 41 and 46 Wt.%) were designed and produced by dry-mixing, pre-forming and hot pressing. The surface hardness of all brake lining samples was measured by using Brinell hardness tester. The density of the specimens was determined based on Archimedean principle in water. The friction and wear characteristics of the brake lining samples were determined using a real brake disc-type tester. Detailed examinations on the worn surface were analyzed using a scanning electron microscopy.

Findings

Fly ash can be good alternative as space filler to reduce the cost for brake lining.

Originality/value

The present study has successfully demonstrated that there is a high potential for commercial applications of brake linings including fly ash as a filler.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 August 2012

Erhan Çeliktaş, Ahmet Topuz and Zafer Kazancı

The purpose of this paper is to produce and investigate a reliable and effective aircraft brake lining material.

Abstract

Purpose

The purpose of this paper is to produce and investigate a reliable and effective aircraft brake lining material.

Design/methodology/approach

In total, four different Cu‐based brake lining samples were produced by powder metallurgy. The produced samples were tested in an experimental setup on friction, wear and mechanical performance, then metallographic and scanning electron microscope inspections were performed. Hardness, compression strength and density of copper‐based brake linings were also tested. Moreover, a numerical simulation of the structural reaction of a sample under compression was carried out by using ANSYS.

Findings

According to tests, suitable aircraft brake lining material composition would be 75% Cu, 5% Fe, 5% Sn, 5% Graphite, 5% SiO2, 5% MoS2.

Practical implications

The paper will help designers choose the most proper ingredient combination for aircraft brake lining materials.

Originality/value

The paper notes that adding silicon dioxide and graphite forms a porosive structure. In addition, porosity brings a low strength and high wear rate.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 September 2017

Wang Chengmin, Yang Xuefeng, Cai Xiguang, Ma Tao, Li Yunxi and Song Peilong

This paper aims to thrash out friction and wear properties of automobile brake lining reinforced by lignin fiber and glass fiber in braking process.

320

Abstract

Purpose

This paper aims to thrash out friction and wear properties of automobile brake lining reinforced by lignin fiber and glass fiber in braking process.

Design/methodology/approach

ABAQUS finite element software was used to analyze thermo-mechanical coupled field of friction materials. XD-MSM constant speed friction testing machine was used to test friction and wear properties of friction material. Worn surface morphology and mechanism of friction materials were observed by using scanning electron microscope.

Findings

The results show that when the temperature was below 350°C, worn mechanism of MFBL was mainly fatigue wear and abrasive wear, and worn mechanism of GFBL was mainly fatigue wear because MFBL contained lignin fiber. Therefore, it exhibits better mechanical properties and friction and wear properties than those of GFBL.

Originality/value

Lignin fiber can improve mechanical properties and friction and wear properties of the automobile brake lining.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 February 2014

Yan Yin, Jiusheng Bao and Lei Yang

In order to improving the braking reliability and assuring the driving safety of automobiles, this paper aims at the wear performance and its online monitoring of its brake lining

Abstract

Purpose

In order to improving the braking reliability and assuring the driving safety of automobiles, this paper aims at the wear performance and its online monitoring of its brake lining.

Design/methodology/approach

The wear performance of the semimetal brake lining for automobiles was investigated on a self-made braking tester for disc brakes. Based on the experimental data, an intelligent forecasting model for the wear rate was established by the artificial neural network (ANN) technology. And by taking it as a core, an online braking wear monitoring system for automobiles was designed.

Findings

It is shown that the wear rate rises obviously with the increasing of both initial braking velocity and braking pressure. By the contrast, the initial braking velocity affects the wear rate more seriously. The ANN model trained by the experimental data shows favorable capability for predicting of the wear rate. The big forecasting errors at high velocity and heavy load should be attributed to the jumping of the wear rate at this period. Based on the existed sensors and electronic control unit system of automobiles, the online braking wear monitoring system can be established easily by the ANN technology.

Originality/value

A self-made braking tester for disc brakes was used to test the wear performance, which can simulate better the actual disc braking conditions than the standard pin-on-disc friction tester. An online braking wear monitoring system was designed to help improving the braking reliability and safety of automobiles.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000