Search results

1 – 6 of 6
Article
Publication date: 15 January 2018

Andrei Khrennikov

This paper aims to present the basic assumptions for creation of social lasers and attract attention of other researchers (both from physics and socio-political science) to the…

Abstract

Purpose

This paper aims to present the basic assumptions for creation of social lasers and attract attention of other researchers (both from physics and socio-political science) to the problem of modeling of Stimulated Amplification of Social Actions (SASA).

Design/methodology/approach

The model of SASA and its analysis are based on the mathematical formalism of quantum thermodynamics and field theory (applied outside of physics).

Findings

The presented quantum-like model provides the consistent operational model of such complex socio-political phenomenon as SASA.

Research limitations/implications

The model of SASA is heavily based on the use of the notion of social energy. This notion has not yet been formalized.

Practical implications

Evidence of SASA (“functioning of social lasers”) is rapidly accumulating, from color revolutions to such democratically structured protest actions as Brexit and the recent election of Donald Trump as the President of the USA. The corresponding socio-political studies are characterized by diversity of opinions and conclusions. The presented social laser model can be used to clarify these complex socio-political events and even predict their possibility.

Social implications

SASA is the powerful source of social instability. Understanding its informational structure and origin may help to stabilize the modern society.

Originality/value

Application of the quantum-like model of laser technology in social and political sciences is really a novel and promising approach.

Open Access
Article
Publication date: 11 March 2022

Andrei Khrennikov

This paper aims to present the basic assumptions for creation of social Fröhlich condensate and attract attention of other researchers (both from physics and socio-political…

Abstract

Purpose

This paper aims to present the basic assumptions for creation of social Fröhlich condensate and attract attention of other researchers (both from physics and socio-political science) to the problem of modeling of stability and order preservation in highly energetic society coupled with social energy bath of high temperature.

Design/methodology/approach

The model of social Fröhlich condensation and its analysis are based on the mathematical formalism of quantum thermodynamics and field theory (applied outside of physics).

Findings

The presented quantum-like model provides the consistent operational model of such complex socio-political phenomenon as Fröhlich condensation.

Research limitations/implications

The model of social Fröhlich condensation is heavily based on theory of open quantum systems. Its consistent elaboration needs additional efforts.

Practical implications

Evidence of such phenomenon as social Fröhlich condensation is demonstrated by stability of modern informationally open societies.

Social implications

Approaching the state of Fröhlich condensation is the powerful source of social stability. Understanding its informational structure and origin may help to stabilize the modern society.

Originality/value

Application of the quantum-like model of Fröhlich condensation in social and political sciences is really the novel and original approach to mathematical modeling of social stability in society exposed to powerful information radiation from mass-media and Internet-based sources.

Article
Publication date: 21 December 2017

François Dubois

The present contribution is in the field of quantum modelling of macroscopic phenomena. The focus is on one enigmatic aspect of quantum physics, namely, the…

Abstract

Purpose

The present contribution is in the field of quantum modelling of macroscopic phenomena. The focus is on one enigmatic aspect of quantum physics, namely, the Einstein–Podolsky–Rosen paradox and entanglement. After a review of the state-of-the-art concerning macroscopic quantum effects and quantum interaction, this paper aims to propose a link between embryology and acupuncture in the framework of macroscopic intricate states induced by quantum mechanics.

Design/methodology/approach

The author uses the fractaquantum hypothesis which supposes that the quantum framework is applicable to all insecable elements in nature, whatever their size.

Findings

This contribution considers an open question related to a possible link between acupuncture and embryology: can a weak form of intrication be maintained during stem cell division to interpret the acupuncture meridians as an explicit manifestation of a macroscopic intricate system? The macroscopic structure suggested by quantum mechanics could be a beginning of explanation of acupuncture through the embryologic development.

Research limitations/implications

A fundamental hypothesis is the fact that during cell division, cells keep some weak intrication.

Practical implications

This contribution suggests a structure of the acupuncture meridians. The links between the acupuncture points have to be searched in the embryologic development of the individual through a weak remaing intrication of some of his cells and not in present explicit relations.

Social implications

A new link between occidental and oriental cultures is explored.

Originality/value

This contribution suggests conceptual links between acupuncture, embryology and macroscopic intricate states.

Details

Kybernetes, vol. 47 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 August 2009

Anas N. Al‐Rabadi

The purpose of this paper is to introduce new non‐classical implementations of neural networks (NNs). The developed implementations are performed in the quantum, nano, and optical…

Abstract

Purpose

The purpose of this paper is to introduce new non‐classical implementations of neural networks (NNs). The developed implementations are performed in the quantum, nano, and optical domains to perform the required neural computing. The various implementations of the new NNs utilizing the introduced architectures are presented, and their extensions for the utilization in the non‐classical neural‐systolic networks are also introduced.

Design/methodology/approach

The introduced neural circuits utilize recent findings in the quantum, nano, and optical fields to implement the functionality of the basic NN. This includes the techniques of many‐valued quantum computing (MVQC), carbon nanotubes (CNT), and linear optics. The extensions of implementations to non‐classical neural‐systolic networks using the introduced neural‐systolic architectures are also presented.

Findings

Novel NN implementations are introduced in this paper. NN implementation using the general scheme of MVQC is presented. The proposed method uses the many‐valued quantum orthonormal computational basis states to implement such computations. Physical implementation of quantum computing (QC) is performed by controlling the potential to yield specific wavefunction as a result of solving the Schrödinger equation that governs the dynamics in the quantum domain. The CNT‐based implementation of logic NNs is also introduced. New implementations of logic NNs are also introduced that utilize new linear optical circuits which use coherent light beams to perform the functionality of the basic logic multiplexer by utilizing the properties of frequency, polarization, and incident angle. The implementations of non‐classical neural‐systolic networks using the introduced quantum, nano, and optical neural architectures are also presented.

Originality/value

The introduced NN implementations form new important directions in the NN realizations using the newly emerging technologies. Since the new quantum and optical implementations have the advantages of very high‐speed and low‐power consumption, and the nano implementation exists in very compact space where CNT‐based field effect transistor switches reliably using much less power than a silicon‐based device, the introduced implementations for non‐classical neural computation are new and interesting for the design in future technologies that require the optimal design specifications of super‐high speed, minimum power consumption, and minimum size, such as in low‐power control of autonomous robots, adiabatic low‐power very‐large‐scale integration circuit design for signal processing applications, QC, and nanotechnology.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 15 July 2021

Ramneek Sidhu and Mayank Kumar Rai

This paper aims to present the edge scattering dominant circuit modeling. The effect of crosstalk on gate oxide reliability (GOR), along with the mitigation using shielding…

Abstract

Purpose

This paper aims to present the edge scattering dominant circuit modeling. The effect of crosstalk on gate oxide reliability (GOR), along with the mitigation using shielding technique is further studied.

Design/methodology/approach

An equivalent distributed Resistance Inductance Capacitance circuit of capacitively coupled interconnects of multilayer graphene nanoribbon (MLGNR) has been considered for T Simulation Program with Integrated Circuit Emphasis (TSPICE) simulations under functional and dynamic switching conditions. Complementary metal oxide semiconductor driver transistors are modeled by high performance predictive technology model that drive the distributed segment with a capacitive load of 0.001 fF, VDD and clock frequency as 0.7 V and 0.2 GHz, respectively, at 14 nm technology node.

Findings

The results reveal that the crosstalk induced delay and noise area are dominated by the overall mean free path (MFP) (i.e. including the effect of edge roughness induced scattering), in contrary to, acoustic and optical scattering limited MFP with the temperature, width and length variations. Further, GOR, estimated in terms of average failure rate (AFR), shows that the shielding technique is an effective method to minimize the relative GOR failure rate by, 0.93e-7 and 0.7e-7, in comparison to the non-shielded case with variations in interconnect’s length and width, respectively.

Originality/value

Considering realistic circuit modeling for MLGNR interconnects by incorporating the edge roughness induced scattering mechanism, the outcomes exhibit more penalty in terms of crosstalk induced noise area and delay. The shielding technique is found to be an effective mitigating technique for minimizing AFR in coupled MLGNR interconnects.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 8 March 2011

Orazio Muscato and Vincenza Di Stefano

The purpose of this paper is to set up a consistent off‐equilibrium thermodynamic theory to deal with the self‐heating of electronic nano‐devices.

Abstract

Purpose

The purpose of this paper is to set up a consistent off‐equilibrium thermodynamic theory to deal with the self‐heating of electronic nano‐devices.

Design/methodology/approach

From the Bloch‐Boltzmann‐Peierls kinetic equations for the coupled system formed by electrons and phonons, an extended hydrodynamic model (HM) has been obtained on the basis of the maximum entropy principle. An electrothermal Monte Carlo (ETMC) simulator has been developed to check the above thermodynamic model.

Findings

A 1D n+nn+ silicon diode has been simulated by using the extended HM and the ETMC simulator, confirming the general behaviour.

Research limitations/implications

The paper's analysis is limited to the 1D case. Future researches will also consider 2D realistic devices.

Originality/value

The non‐equilibrium character of electrons and phonons has been taken into account. In previous works, this methodology was used only for equilibrium phonons.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 6 of 6