Search results

1 – 10 of 186
Article
Publication date: 19 June 2009

M. Xie, Z.W. Zhong, L. Zhang, L.B. Xian, L. Wang, H.J. Yang, C.S. Song and J. Li

Planning and control of humanoid biped walking has been an active research topic for many years. But, there is no definite answer to the question of how to practicre‐examinedally…

Abstract

Purpose

Planning and control of humanoid biped walking has been an active research topic for many years. But, there is no definite answer to the question of how to practicre‐examinedally achieve speedy and stable walking in real‐time and in a changing environment. The purpose of this paper is to re‐examine the issue of planning and controlling humanoid biped walking, then to propose two new ideas.

Design/methodology/approach

The first idea is to treat the supporting foot of a biped to be part of the ground. In this way, there is a foot reaction force acting at a fixed virtual joint, which can be at, or below, the ankle joint. And, a new concept is come our that is named as in‐foot ZMP in contrast to the existing concept of on‐ground ZMP. The unique benefit with this new concept of in‐foot ZMP is that the ZMP control is no longer an issue because the in‐foot ZMP can be controlled so as to to be at a fixed virtual joint during a stable walking. Such a fixed virtual joint can be called a ZMP joint.

Findings

The second idea is to focus on hip's trajectory (instead of on‐ground ZMP's trajectory) and to split a hip's dynamic response into two independent parts: one is the steady‐state response contributing to the stability of walking (or standing), and the other is the transient response contributing to the speed of walking. This idea allows us to explicitly postulate the necessary and sufficient condition for achieving leg stability as well as the necessary and sufficient condition for achieving foot stability. The paper shows that the implementation of these two new ideas help realize a unified framework for task‐guided, intention‐guided, and sensor‐guided, planning and control of humanoid biped walking.

Originality/value

This paper first re‐examines the issue of planning and controlling humanoid biped walking, then proposes two new ideas. The first idea is to treat the supporting foot of a biped to be part of the ground. The second idea is to focus on hip's trajectory (instead of on‐ground ZMP's trajectory) and to split a hip's dynamic response into two independent parts: one is the steady‐state response contributing to the stability of walking (or standing), and the other is the transient response contributing to the speed of walking.

Details

Industrial Robot: An International Journal, vol. 36 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2014

Yeoun-Jae Kim, Joon-Yong Lee and Ju-Jang Lee

This paper aims to present a step-exchange strategy for balance control of a walking biped robot when a lateral impact acts suddenly. A step-out strategy has been recently…

Abstract

Purpose

This paper aims to present a step-exchange strategy for balance control of a walking biped robot when a lateral impact acts suddenly. A step-out strategy has been recently proposed for balance control when an unknown lateral force acts to a biped robot during walking. This step-out strategy causes a robot to absorb the impact kinetic energy and efficiently maintain balance without falling down. Nevertheless, it was found that the previous strategies have drawbacks that the two foots should always be on the ground (double-support mode) after being balanced and the authors think it is difficult to continue walking after being balanced. Unlike the existing balance strategies, the proposed step-exchange strategy is to not only maintain balance but also to lift one leg in the air (single-support mode) after being balanced so that it is easy for a biped robot to keep walking after being balanced.

Design/methodology/approach

In the proposed step-exchange strategy, forward Newton–Euler equation, angular momentum and energy conservation equation were derived. Hill-climbing algorithm is utilized for numerically finding a solution. To verify the proposed strategy, a biped robot by Open Dynamics Engine was stimulated, and experiments with a real biped robot (LRH-1) were also conducted.

Findings

The proposed step-exchange strategy enables a walking biped robot under a lateral impact to keep balance and to keep a single-support mode after exchanging a leg. It is helpful for a biped robot to continue walking without any stop. It is found that the proposed step-exchange strategy can be applicable for maintaining balance even if a biped robot is moving. Even though this proposal seems immature yet, it is the first attempt to exchange the supporting foot itself. This strategy is very straightforward and intuitive because humans are also likely to exchange their supporting foot onto the opposite side when an unexpected force is acting.

Research limitations/implications

The proposed step-exchange strategy described in this paper can be applicable in the situation when the external force is applied in the +Y direction, the left leg is the swing leg and the right leg is the stance leg, or it can also be applicable in the situation when the external force is applied in −Y direction, the right leg is the swing leg and the left leg is the stance leg (Figure 2 for ±Y force direction). If an impact force acts to the side of the swing leg, the other step-exchange strategy is needed. The authors are studying this issue as a future work.

Originality/value

The authors have originated the proposed step-exchange strategy for balance control of a walking biped robot under lateral impact. The strategy is genuine and superior in comparison with the state-of-the-art strategy because not only can a biped robot be balanced but it can also easily continue walking by using the step-exchange strategy.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 July 2018

Hongbo Zhu, Minzhou Luo and Jingzhao Li

The purpose of this study is to present an optimization-based gait planning method for biped robots according to the conditions of terrain, which takes fully the relationship…

Abstract

Purpose

The purpose of this study is to present an optimization-based gait planning method for biped robots according to the conditions of terrain, which takes fully the relationship between walking stability margin and energy efficiency into account.

Design/methodology/approach

First, the authors newly designed a practical gait motion synthesis algorithm by using the optimal allowable zero moment point (ZMP) variation region (OAZR), which can generate different gait motions corresponding to different terrains based on the modifiability of ZMP in lateral (y-axis) direction. Second, an effective gait parameter optimization algorithm is performed to find the optimal set of key gait parameters (step length, duration time of gait cycle, average height of center of mass (CoM), amplitude of the vertical CoM motion and double support ratio), which maximizes either the walking stability margin or the energy efficiency with certain walking stability margin under practical constraints (mechanical constraints of all joint motors, geometric constraints, friction force limit and yawing moment limit) according to the conditions of terrain. Third, the necessary controllers for biped robots have been introduced briefly.

Findings

The experiment data and results are described and analyzed, showing that the proposed method was verified through simulations and implemented on a DRC-XT biped robot.

Originality/value

The main contribution is that the OAZR has been defined based on AZR, which could be used to plan and generate the various feasible gait motions to help a biped robot to adapt effectively to various terrains.

Details

Industrial Robot: An International Journal, vol. 45 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 June 2013

Chao Liu and Yan‐An Yao

The purpose of this paper is to propose a spatial six‐link RRCCRR (where R denotes a revolute joint, and C denotes a cylindric joint) mechanism to be used as the mechanism body of…

Abstract

Purpose

The purpose of this paper is to propose a spatial six‐link RRCCRR (where R denotes a revolute joint, and C denotes a cylindric joint) mechanism to be used as the mechanism body of a biped robot with three translations (3T) manipulation ability.

Design/methodology/approach

This biped RRCCRR mechanism can reach any position on the ground by a crawling mode or alternatively, a somersaulting mode. After the robot reaches a designated position, it can work in manipulation mode. Mobility, walking mode, kinematic and stability analyses are performed, respectively.

Findings

Based on this biped RRCCRR mechanism, a biped 3T lifter which can be used in industry is designed and analyzed. Finally, the proposed concept is verified by experiments on a prototype.

Originality/value

The work presented in this paper is one of new explorations to apply traditional spatial linkage mechanisms to the field of biped robots, and is also a new attempt to use the biped robot, that is generally used in the field of bionic robots, as a mobile manipulator robot platform in industry.

Details

Industrial Robot: An International Journal, vol. 40 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 May 2017

Hongbo Zhu, Minzhou Luo, Jianghai Zhao and Tao Li

The purpose of this paper was to present a soft landing control strategy for a biped robot to avoid and absorb the impulsive reaction forces (which weakens walking stability…

Abstract

Purpose

The purpose of this paper was to present a soft landing control strategy for a biped robot to avoid and absorb the impulsive reaction forces (which weakens walking stability) caused by the landing impact between the swing foot and the ground.

Design/methodology/approach

First, a suitable trajectory of the swing foot is preplanned to avoid the impulsive reaction forces in the walking direction. Second, the impulsive reaction forces of the landing impact are suppressed by the on-line trajectory modification based on the extended time-domain passivity control with admittance causality that has the reaction forces as inputs and the decomposed swing foot’s positions to trim off the forces as the outputs.

Findings

The experiment data and results are described and analyzed, showing that the proposed soft landing control strategy can suppress the impulsive forces and improve walking stability.

Originality/value

The main contribution is that a soft landing control strategy for a biped robot was proposed to deal with the impulsive reaction forces generated by the landing impact, which enhances walking stability.

Details

Industrial Robot: An International Journal, vol. 44 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2009

Fei Wang, Chengdong Wu, Xinthe Xu and Yunzhou Zhang

The purpose of this paper is to present a coordinated control strategy for stable walking of biped robot with heterogeneous legs (BRHL), which consists of artificial leg (AL) and…

Abstract

Purpose

The purpose of this paper is to present a coordinated control strategy for stable walking of biped robot with heterogeneous legs (BRHL), which consists of artificial leg (AL) and intelligent bionic leg (IBL).

Design/methodology/approach

The original concentrated control in common biped robot system is replaced by a master‐slave dual‐leg coordinated control. P‐type open/closed‐loop iterative learning control is used to realize the time‐varying gait tracking for IBL to AL.

Findings

The new control architecture can simplify gait planning scheme of BRHL system with complicated closed‐chain mechanism and mixed driving mode.

Research limitations/implications

Designing and constructing a suitable magneto‐rheological damper can greatly improve the control performance of IBL.

Practical implications

Master‐slave coordination strategy is suitable for BRHL stable walking control.

Originality/value

The concepts and methods of dual‐leg coordination have not been explicitly proposed in single biped robot control research before. Master‐slave coordinated control strategy is suitable for complicated BRHL.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 October 2017

Joanne Pransky

The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience…

Abstract

Purpose

The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues.

Design/methodology/approach

The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research.

Findings

Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots.

Originality/value

Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
107

Abstract

Details

Industrial Robot: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 October 2019

Xiangyu Liu, Chunyan Zhang, Cong Ni and Chenhui Lu

The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be…

Abstract

Purpose

The purpose of this paper is to put forward a nvew reconfigurable multi-mode walking-rolling robot based on the single-loop closed-chain four-bar mechanism, and the robot can be changed to different modes according to the terrain.

Design/methodology/approach

Based on the topological analysis, singularity analysis, feasibility analysis, gait analysis and the motion strategy based on motor time-sharing control, the paper theoretically verified that the robot can switch between the four motion modes.

Findings

The robot integrates four-bar walking, self-deforming and four-bar and six-bar rolling modes. A series of simulation and prototype experiment results are presented to verify the feasibility of multiple motion modes of the robot.

Originality/value

The work presented in this paper provides a good theoretical basis for further exploration of multiple mode mobile robots. It is an attempt to design the multi-mode mobile robot based on single loop kinematotropic mechanisms. It is also a kind of exploration of the new unknown movement law.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 June 2018

Xuefeng Zhou, Li Jiang, Yisheng Guan, Haifei Zhu, Dan Huang, Taobo Cheng and Hong Zhang

Applications of robotic systems in agriculture, forestry and high-altitude work will enter a new and huge stage in the near future. For these application fields, climbing robots…

Abstract

Purpose

Applications of robotic systems in agriculture, forestry and high-altitude work will enter a new and huge stage in the near future. For these application fields, climbing robots have attracted much attention and have become one central topic in robotic research. The purpose of this paper is to propose an energy-optimal motion planning method for climbing robots that are applied in an outdoor environment.

Design/methodology/approach

First, a self-designed climbing robot named Climbot is briefly introduced. Then, an energy-optimal motion planning method is proposed for Climbot with simultaneous consideration of kinematic constraints and dynamic constraints. To decrease computing complexity, an acceleration continuous trajectory planner and a path planner based on spatial continuous curve are designed. Simulation and experimental results indicate that this method can search an energy-optimal path effectively.

Findings

Climbot can evidently reduce energy consumption when it moves along the energy-optimal path derived by the method used in this paper.

Research limitations/implications

Only one step climbing motion planning is considered in this method.

Practical implications

With the proposed motion planning method, climbing robots applied in an outdoor environment can commit more missions with limit power supply. In addition, it is also proved that this motion planning method is effective in a complicated obstacle environment with collision-free constraint.

Originality/value

The main contribution of this paper is that it establishes a two-planner system to solve the complex motion planning problem with kinodynamic constraints.

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 186