Search results

1 – 10 of 46
Article
Publication date: 25 September 2024

Kumarasubramanian Ramar and Ganesan Subbiah

This study aims to examine the environmental effects of plastic waste on the atmosphere and its implications for disaster waste management. It focuses on using ammonia, pyrolyzed…

Abstract

Purpose

This study aims to examine the environmental effects of plastic waste on the atmosphere and its implications for disaster waste management. It focuses on using ammonia, pyrolyzed plastic oil and the effectiveness of alumina nanoparticles as a catalyst.

Design/methodology/approach

The research explores different combinations of conventional diesel and nano Al2O3 derived from pyrolyzed plastic oil (ranging from P10 to P40). Critical performance metrics evaluated include brake mean effective pressure (BMEP), brake specific fuel consumption, brake thermal efficiency and emissions of CO2, CO and NOx. The study specifically investigates the impact of adding 50 ppm of Al2O3 nanoparticles to these blends.

Findings

The findings indicate that using blended fuels with nanoadditives significantly lowers pollution. Specifically, the P30 blend with 50 ppm of Al2O3 nanoparticles greatly reduced CO emissions. Additionally, the same blend reduced NOx emissions and CO2 emissions. The P30 mix showed improved BMEP and brake thermal efficiency due to its density, calorific value and viscosity (6.3 bar). The P30 blend exhibited higher thermal efficiency due to decreased heat loss, whereas conventional diesel demonstrated the best mechanical efficiency due to its longer ignition delay.

Originality/value

This study highlights the potential of using Al2O3 nanoparticles and pyrolyzed plastic oil to reduce emissions and enhance the performance of internal combustion engines. It underscores the environmental benefits and implications for disaster waste management by converting plastic waste into useful resources and reducing air pollution.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 September 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study examines how different stacking sequences of bamboo and flax fibers, treated with 5% aqueous sodium hydroxide (NaOH) and filled with 6wt% titanium oxide (TiO2), affect…

Abstract

Purpose

This study examines how different stacking sequences of bamboo and flax fibers, treated with 5% aqueous sodium hydroxide (NaOH) and filled with 6wt% titanium oxide (TiO2), affect the physical, mechanical and dry sliding wear resistance properties of a hybrid composite.

Design/methodology/approach

Composites with different fiber stacking arrangements were developed and tested per American Society for Testing and Materials (ASTM) standards to evaluate physical, mechanical and wear resistance properties, focusing on the impact of flax fiber mats at intermediate and outer layers.

Findings

The hybrid composite significantly outperformed composites reinforced solely with bamboo fibers, showing a 65.95% increase in tensile strength, a 53.29% boost in flexural strength and a 91.01% improvement in impact strength. The configuration with multiple layers of flax fiber mat at intermediate and outer levels also demonstrated superior wear resistance.

Originality/value

This study highlights the critical role of stacking order in optimizing the mechanical properties and wear resistance of hybrid composites. The findings provide valuable insights for the design and application of advanced composite materials, particularly in industries requiring high performance and durability.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 August 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This study aims to investigate the impact of titanium oxide (TiO2) filler on the coefficient of friction (COF) and specific wear rate (SWR) in flax fiber reinforced epoxy…

Abstract

Purpose

This study aims to investigate the impact of titanium oxide (TiO2) filler on the coefficient of friction (COF) and specific wear rate (SWR) in flax fiber reinforced epoxy composites (FFRCs) under abrasive wear conditions utilizing the Taguchi approach. The primary objective is to enhance wear resistance and promote the development of sustainable materials for various applications.

Design/methodology/approach

Epoxy/flax composites with varying TiO2 filler content (0–8 wt%) are fabricated through the hand layup method. Subsequently, wear testing is conducted following ASTM G99-05 standards. The Taguchi design of experiments (DOE) and analysis of variance (ANOVA) are utilized for statistical analysis.

Findings

Results indicate a significant improvement in abrasive wear properties with the incorporation of TiO2 filler. The COF is found to be most influenced by the normal load (55.19%), followed by grit size, wt% TiO2 filler and sliding distance. SWR is found to be most influenced by the grit size (42.92%), followed by wt% TiO2, normal load and sliding distance. Notably, the Taguchi model aligns well with experimental results, demonstrating its efficacy in predicting the abrasive wear behavior of FFRCs.

Originality/value

This research introduces a novel hybrid composite that combines TiO2 filler and flax fibers, showcasing their potential to enhance the tribological properties of epoxy composites. The study offers valuable insights into optimizing abrasive wear test variables in natural fiber-reinforced composites using Taguchi DOE and ANOVA, crucial for improving the performance of sustainable materials in engineering applications.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 18 July 2023

Shinta Rahma Diana and Farida Farida

Technology acceptance is a measure of that technology’s usefulness. Oil palm is one of the biggest contributors to Indonesia’s revenues, thus fueling its economy. Using remote…

Abstract

Purpose

Technology acceptance is a measure of that technology’s usefulness. Oil palm is one of the biggest contributors to Indonesia’s revenues, thus fueling its economy. Using remote sensing would allow a plantation to monitor and forecast its production and the amount of fertilizer used. This review aims to provide a policy recommendation in the form of a strategy to improve the added value of Indonesia’s oil palm and support the government in increasing oil palm production. This recommendation needs to be formulated by determining the users’ acceptance of remote sensing technology (state-owned plantations, private plantation companies and smallholder plantations).

Design/methodology/approach

This review’s methodology used sentiment analysis through text mining (bag of words model). The study’s primary data were from focus group discussions (FGDs), questionnaires, observations on participants, audio-visual documentation and focused discussions based on group category. The results of interviews and FGDs were transcribed into text and analyzed to 1) find words that can represent the content of the document; 2) classify and determine the frequency (word cloud); and finally 3) analyze the sentiment.

Findings

The result showed that private plantation companies and state-owned plantations had extremely high positive sentiments toward using remote sensing in their oil palm plantations, whereas smallholders had a 60% resistance. However, there is still a possibility for this technology’s adoption by smallholders, provided it is free and easily applied.

Research limitations/implications

Basically, technology is applied to make work easier. However, not everyone is tech-savvy, especially the older generations. One dimension of technology acceptance is user/customer retention. New technology would not be immediately accepted, but there would be user perceptions about its uses and ease. At first, people might be reluctant to accept a new technology due to the perception that it is useless and difficult. Technology acceptance is the gauge of how useful technology is in making work easier compared to conventional ways.

Practical implications

Therefore, technology acceptance needs to be improved among smallholders by intensively socializing the policies, and through dissemination and dedication by academics and the government.

Social implications

The social implications of using technology are reducing the workforce, but the company will be more profitable and efficient.

Originality/value

Remote sensing is one of the topics that people have not taken up in a large way, especially sentiment analysis. Acceptance of technology that utilizes remote sensing for plantations is very useful and efficient. In the end, company profits can be allocated more toward empowering the community and the environment.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 21 December 2023

Alireza Arab, Mohammad Ali Sheikholislam and Saeid Abdollahi Lashaki

The purpose of this paper is to review studies on mathematical optimization of the sustainable gasoline supply chain to help decision-makers understand the current situation, the…

Abstract

Purpose

The purpose of this paper is to review studies on mathematical optimization of the sustainable gasoline supply chain to help decision-makers understand the current situation, the exact dimensions of the problem and the models provided in the literature. So, a more realistic mathematical optimization model can be achieved by fully covering all dimensions of the supply chain of this product.

Design/methodology/approach

To evaluate and comprehend the mathematical optimization of the sustainable gasoline supply chain research area, a systematic literature review is undertaken that covers material collection, descriptive analysis, content analysis and material evaluation steps. Finally, based on this process, 69 related articles were carefully investigated.

Findings

The results of the systematic literature review show the main areas of the published papers on mathematical optimization of sustainable gasoline supply chain problems and the gaps for future research in this field presented based on them.

Research limitations/implications

This approach is subject to limitations because the protocol of the systematic review of the research literature only included searching for the considered combination of keywords in the Scopus and ProQuest databases. Furthermore, the protocol used in this paper restricts documents to English.

Practical implications

The results have significant implications for both academicians and practitioners in this field. It can be useful for academics to comprehend the gaps and future trends in this field. Also, for practitioners, it can be useful to identify and understand the parts of the mathematical optimization model, which can help them model this problem effectively and efficiently.

Originality/value

No systematic literature review has been done in this field by considering gasoline to the best of the authors’ knowledge and delivers new facts for the future development of this field.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 20 September 2024

Vitiana L'Abate, Benedetta Esposito, Nicola Raimo, Daniela Sica and Filippo Vitolla

Although there is a growing body of literature on circular economy disclosure (CED), certain sectors, including the airline industry, remain underexplored despite the particular…

Abstract

Purpose

Although there is a growing body of literature on circular economy disclosure (CED), certain sectors, including the airline industry, remain underexplored despite the particular relevance of circular models in this field. This study aims to fill this gap by examining the dissemination of circular economy (CE) information by airlines through their website and investigating the factors influencing the level of CED. Specifically, this study focuses on the characteristics of the board of directors, given its central role in shaping disclosure practices.

Design/methodology/approach

This study employs manual content analysis to measure the extent of CE information disclosed by 105 international airlines through their website. It then conducts a regression analysis to examine the influence of board characteristics on the level of online CED.

Findings

The results suggest that airlines with larger, more active and more independent boards of directors tend to be more inclined to disseminate CE information through their website. Furthermore, they demonstrate that board gender diversity does not significantly affect the extent of CE information disseminated.

Originality/value

The study offers valuable contributions by extending CED research to the airline industry and exploring new channels for CE information dissemination. Additionally, it highlights the role of the board of directors in shaping CED practices and confirms the effectiveness of the stakeholder-agency theory in explaining this relationship.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 5 July 2024

Hasan Mahmud, Kanij Shobnom, Md. Rayhan Ali, Nafia Muntakim, Ummey Kulsum, Dalce Shete Baroi, Zihad Ahmed, Md. Mizanoor Rahman and Md. Zahidul Hassan

Bangladesh is one of the leading countries that has been facing serious air pollution issues, with an exponentially higher death rate attributed to it than other environmental…

Abstract

Purpose

Bangladesh is one of the leading countries that has been facing serious air pollution issues, with an exponentially higher death rate attributed to it than other environmental pollution. This study aims to identify the sources and dynamics of particulate matter (PM) pollution across different micro-environments in Rajshahi City.

Design/methodology/approach

PMs’ concentration data were collected from 60 sampling stations, located across the six micro-environments of the study area, throughout the year using “HT 9600 Particle Counter.” To assess the level of pollution, the air quality index (AQI) was calculated, and different methods, including observation, group discussion, interview and questionnaire survey, were used to identify the pollution sources.

Findings

Both PM2.5 and PM10 exhibit varied concentrations in different micro-environments, and the area covered by different AQI classes differs considerably throughout the year. The monthly average concentration of PM2.5 and PM10 was highest in January, 200 and 400 µg/m³ and was lowest in September, 46 and 99 µg/m³, respectively. Among the total 1,440 observations, 853 observations (59.24%) exceeded the national standard. Based on the pollution level, different months and micro-environments in the city have been ranked in descending order as January > December > February > March > April > November > October > May > June > July > August > September and traffic > commercial > industrial > residential > green cover > riverine environment.

Originality/value

Although numerous research has been conducted on air pollution in Bangladesh, the authors are certain that no attempt has been made to address the issue from a multi- micro-environmental perspective. This makes the methodology and findings truly unique and significant in the context of air pollution research in Bangladesh.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of 46