Search results

1 – 10 of 89
Book part
Publication date: 18 January 2024

Robert T. F. Ah King and Samiah Mohangee

To operate with high efficiency and minimise the risks of power failures, power systems require careful monitoring. The availability of real-time data is crucial for assessing the…

Abstract

To operate with high efficiency and minimise the risks of power failures, power systems require careful monitoring. The availability of real-time data is crucial for assessing the performance of the grid and assisting operators in gauging the present security of the grid. Traditional supervisory control and data acquisition (SCADA)-based systems actually employed provides steady-state measurement values which are the calculation premise of State Estimation. More often, however, the power grid operates under dynamic state and SCADA measurements can lead to erroneous and inaccurate calculation results. The introduction of the phasor measurement unit (PMU) which provides real-time synchronised voltage and current phasors with very high accuracy is universally recognised as an important aspect of delivering a secure and sustainable power system. PMUs are a relatively new technology and because of their high procurement and installation costs, it is imperative to develop appropriate methodologies to determine the minimum number of PMUs as well as their strategic placements to guarantee full observability of a power system. Thus, the problem of the optimal PMU placement (OPP) is formulated as an optimisation problem subject to various constraints to minimise the number of PMUs while ensuring complete observability of the grid. In this chapter, integer linear programming (ILP), genetic algorithm (GA) and non-linear programming (NLP) constrained models of the OPP problem are presented. A new methodology is proposed to incorporate several constraints using the NLP. The optimisation methods have been written in Matlab software and verified on the standard Institute of Electrical and Electronics Engineers (IEEE) 14-bus test system to authenticate their effectiveness. This chapter targets United Nations Sustainable Development Goal 7.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 4 December 2023

Ahmed M. Attia, Ahmad O. Alatwi, Ahmad Al Hanbali and Omar G. Alsawafy

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Abstract

Purpose

This research integrates maintenance planning and production scheduling from a green perspective to reduce the carbon footprint.

Design/methodology/approach

A mixed-integer nonlinear programming (MINLP) model is developed to study the relation between production makespan, energy consumption, maintenance actions and footprint, i.e. service level and sustainability measures. The speed scaling technique is used to control energy consumption, the capping policy is used to control CO2 footprint and preventive maintenance (PM) is used to keep the machine working in healthy conditions.

Findings

It was found that ignoring maintenance activities increases the schedule makespan by more than 21.80%, the total maintenance time required to keep the machine healthy by up to 75.33% and the CO2 footprint by 15%.

Research limitations/implications

The proposed optimization model can simultaneously be used for maintenance planning, job scheduling and footprint minimization. Furthermore, it can be extended to consider other maintenance activities and production configurations, e.g. flow shop or job shop scheduling.

Practical implications

Maintenance planning, production scheduling and greenhouse gas (GHG) emissions are intertwined in the industry. The proposed model enhances the performance of the maintenance and production systems. Furthermore, it shows the value of conducting maintenance activities on the machine's availability and CO2 footprint.

Originality/value

This work contributes to the literature by combining maintenance planning, single-machine scheduling and environmental aspects in an integrated MINLP model. In addition, the model considers several practical features, such as machine-aging rate, speed scaling technique to control emissions, minimal repair (MR) and PM.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 16 October 2023

Maedeh Gholamazad, Jafar Pourmahmoud, Alireza Atashi, Mehdi Farhoudi and Reza Deljavan Anvari

A stroke is a serious, life-threatening condition that occurs when the blood supply to a part of the brain is cut off. The earlier a stroke is treated, the less damage is likely…

Abstract

Purpose

A stroke is a serious, life-threatening condition that occurs when the blood supply to a part of the brain is cut off. The earlier a stroke is treated, the less damage is likely to occur. One of the methods that can lead to faster treatment is timely and accurate prediction and diagnosis. This paper aims to compare the binary integer programming-data envelopment analysis (BIP-DEA) model and the logistic regression (LR) model for diagnosing and predicting the occurrence of stroke in Iran.

Design/methodology/approach

In this study, two algorithms of the BIP-DEA and LR methods were introduced and key risk factors leading to stroke were extracted.

Findings

The study population consisted of 2,100 samples (patients) divided into six subsamples of different sizes. The classification table of each algorithm showed that the BIP-DEA model had more reliable results than the LR for the small data size. After running each algorithm, the BIP-DEA and LR algorithms identified eight and five factors as more effective risk factors and causes of stroke, respectively. Finally, predictive models using the important risk factors were proposed.

Originality/value

The main objective of this study is to provide the integrated BIP-DEA algorithm as a fast, easy and suitable tool for evaluation and prediction. In fact, the BIP-DEA algorithm can be used as an alternative tool to the LR model when the sample size is small. These algorithms can be used in various fields, including the health-care industry, to predict and prevent various diseases before the patient’s condition becomes more dangerous.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 2 January 2023

Mehdi Namazi, Madjid Tavana, Emran Mohammadi and Ali Bonyadi Naeini

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D…

Abstract

Purpose

New business practices and the globalization of markets force firms to take innovation as the fundamental pillar of their competitive strategy. Research and Development (R&D) plays a vital role in innovation. As technology advances and product life cycles become shorter, firms rely on R&D as a strategy to invigorate innovation. R&D project portfolio selection is a complex and challenging task. Despite the management's efforts to implement the best project portfolio selection practices, many projects continue to fail or miss their target. The problem is that selecting R&D projects requires a deep understanding of strategic vision and technical capabilities. However, many decision-makers lack technological insight or strategic vision. This article aims to provide a method to capitalize on the expertise of R&D professionals to assist managers in making informed and effective decisions. It also provides a framework for aligning the portfolio of R&D projects with the organizational vision and mission.

Design/methodology/approach

This article proposes a new strategic approach for R&D project portfolio selection using efficiency-uncertainty maps.

Findings

The proposed strategy plane helps decision-makers align R&D project portfolios with their strategies to combine a strategic view and numerical analysis in this research. The proposed strategy plane consists of four areas: Exploitation Zone, Challenge Zone, Desperation Zone and Discretion Zone. Mapping the project into this strategic plane would help decision-makers align their project portfolio according to the corporate perspectives.

Originality/value

The new approach combines the efficiency and uncertainty dimensions in portfolio selection into an integrated framework that: (i) provides a complete representation of the stochastic decision-making processes, (ii) models the endogenous uncertainty inherent in the project selection process and (iii) proposes a computationally practical and visually unique solution procedure for classifying desirable and undesirable R&D projects.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 15 September 2023

Darshan Pandya, Gopal Kumar and Shalabh Singh

It is crucial for the Indian micro, small and medium enterprises (MSMEs) to implement a few of the most important Industry 4.0 (I4.0) technologies and reap maximum benefits of…

Abstract

Purpose

It is crucial for the Indian micro, small and medium enterprises (MSMEs) to implement a few of the most important Industry 4.0 (I4.0) technologies and reap maximum benefits of sustainability. This paper aims to prioritize I4.0 technologies that can help achieve the sustainable operations and sustainable industrial marketing performance of Indian manufacturing MSMEs.

Design/methodology/approach

I4.0-based sustainability model was developed. The model was analyzed using data collected from MSMEs by deploying analytic hierarchy process and utility-function-based goal programming. To have a better understanding, interviews were conducted.

Findings

Predictive analytics, machine learning and real-time computing were found to be the most important I4.0 technologies for sustainable performance. Sensitivity analysis further confirmed the robustness of the results. Business-to-business sustainable marketing is prioritized as per the sustainability need of operations of industrial MSME buyers.

Originality/value

This study uniquely integrates literature and practitioners’ insights to explore I4.0’s role in MSMEs sustainability in emerging economies. It fills a research gap by aligning sustainability goals of industrial buyers with suppliers’ marketing strategies. Additionally, it offers practical recommendations for implementing technologies in MSMEs, contributing to both academia and industry practices.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 3
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 22 February 2024

Zoubida Chorfi

As supply chain excellence matters, designing an appropriate health-care supply chain is a great consideration to the health-care providers worldwide. Therefore, the purpose of…

Abstract

Purpose

As supply chain excellence matters, designing an appropriate health-care supply chain is a great consideration to the health-care providers worldwide. Therefore, the purpose of this paper is to benchmark several potential health-care supply chains to design an efficient and effective one in the presence of mixed data.

Design/methodology/approach

To achieve this objective, this research illustrates a hybrid algorithm based on data envelopment analysis (DEA) and goal programming (GP) for designing real-world health-care supply chains with mixed data. A DEA model along with a data aggregation is suggested to evaluate the performance of several potential configurations of the health-care supply chains. As part of the proposed approach, a GP model is conducted for dimensioning the supply chains under assessment by finding the level of the original variables (inputs and outputs) that characterize these supply chains.

Findings

This paper presents an algorithm for modeling health-care supply chains exclusively designed to handle crisp and interval data simultaneously.

Research limitations/implications

The outcome of this study will assist the health-care decision-makers in comparing their supply chains against peers and dimensioning their resources to achieve a given level of productions.

Practical implications

A real application to design a real-life pharmaceutical supply chain for the public ministry of health in Morocco is given to support the usefulness of the proposed algorithm.

Originality/value

The novelty of this paper comes from the development of a hybrid approach based on DEA and GP to design an appropriate real-life health-care supply chain in the presence of mixed data. This approach definitely contributes to assist health-care decision-makers design an efficient and effective supply chain in today’s competitive word.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 26 September 2023

Seyed Mojtaba Taghavi, Vahidreza Ghezavati, Hadi Mohammadi Bidhandi and Seyed Mohammad Javad Mirzapour Al-e-Hashem

This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of…

Abstract

Purpose

This paper aims to minimize the mean-risk cost of sustainable and resilient supplier selection, order allocation and production scheduling (SS,OA&PS) problem under uncertainty of disruptions. The authors use conditional value at risk (CVaR) as a risk measure in optimizing the combined objective function of the total expected value and CVaR cost. A sustainable supply chain can create significant competitive advantages for companies through social justice, human rights and environmental progress. To control disruptions, the authors applied (proactive and reactive) resilient strategies. In this study, the authors combine resilience and social responsibility issues that lead to synergy in supply chain activities.

Design/methodology/approach

The present paper proposes a risk-averse two-stage mixed-integer stochastic programming model for sustainable and resilient SS,OA&PS problem under supply disruptions. In this decision-making process, determining the primary supplier portfolio according to the minimum sustainable-resilient score establishes the first-stage decisions. The recourse or second-stage decisions are: determining the amount of order allocation and scheduling of parts by each supplier, determining the reactive risk management strategies, determining the amount of order allocation and scheduling by each of reaction strategies and determining the number of products and scheduling of products on the planning time horizon. Uncertain parameters of this study are the start time of disruption, remaining capacity rate of suppliers and lead times associated with each reactive strategy.

Findings

In this paper, several numerical examples along with different sensitivity analyses (on risk parameters, minimum sustainable-resilience score of suppliers and shortage costs) were presented to evaluate the applicability of the proposed model. The results showed that the two-stage risk-averse stochastic mixed-integer programming model for designing the SS,OA&PS problem by considering economic and social aspects and resilience strategies is an effective and flexible tool and leads to optimal decisions with the least cost. In addition, the managerial insights obtained from this study are extracted and stated in Section 4.6.

Originality/value

This work proposes a risk-averse stochastic programming approach for a new multi-product sustainable and resilient SS,OA&PS problem. The planning horizon includes three periods before the disruption, during the disruption period and the recovery period. Other contributions of this work are: selecting the main supply portfolio based on the minimum score of sustainable-resilient criteria of suppliers, allocating and scheduling suppliers orders before and after disruptions, considering the balance constraint in receiving parts and using proactive and reactive risk management strategies simultaneously. Also, the scheduling of reactive strategies in different investment modes is applied to this problem.

Article
Publication date: 12 October 2023

Zhuyue Li and Chunxiao Zhang

Supply chain risk management can effectively reduce the loss of retailers. In this regard, retailers need to consider the competition risks of competitors in addition to the…

Abstract

Purpose

Supply chain risk management can effectively reduce the loss of retailers. In this regard, retailers need to consider the competition risks of competitors in addition to the disruption risks. This paper designs a resilient retail supply chain network for perishable foods under the dynamic competition to maximize retailer's profits.

Design/methodology/approach

A two-stage mixed-integer non-linear model is presented for designing the supply chain network. In the first stage, an equilibrium model that considers the characteristics of perishable foods is developed. In the second stage, a mixed integer non-linear programming model is presented to deal with the strategic decisions. Finally, an efficient memetic algorithm is designed to deal with large-scale problems.

Findings

The optimal the selection of suppliers, distribution centers and the order allocation are found among the supply chain entities. Considering the perishability of agri-food products, the equilibrium retail price and selling quantity are determined. Through a numerical example, the optimal inventory period under different maximum shelf life and the impact of three resilient strategies on retailer's profit, selling price and selling quantity are analyzed.

Research limitations/implications

As for future research, the research can be extended in a number of directions. First, this paper studies the retail supply chain network design problem under competition among retailers. It can be an interesting direction to consider retailers competing with suppliers. Second, the authors can try to linearize the non-linear model and solve the large-scale integer programming problem by exact algorithm. Finally, the freshness of perishable foods gradually declines linearly to zero as the maximum shelf life approaches, and it would be a meaningful attempt to consider the freshness of perishable foods declines exponentially.

Originality/value

This paper innovatively designs the resilient supply chain network for perishable foods under dynamic competition. The retailer's dynamic competition and resilient strategies are considered simultaneously when designing supply chain network for perishable foods. In addition, this paper gives insights into how to obtain the optimal inventory period and compare the retailer's resilient strategies.

Article
Publication date: 9 September 2022

Akhilesh Kumar, Gaurav Kumar, Tanaya Vijay Ramane and Gurjot Singh

This study proposes strategies for vaccine center allocation for coronavirus disease (COVID) vaccine by determining the number of vaccination stations required for the vaccination…

Abstract

Purpose

This study proposes strategies for vaccine center allocation for coronavirus disease (COVID) vaccine by determining the number of vaccination stations required for the vaccination drive, location of vaccination station, assignment of demand group to vaccination station, allocation of the scarce medical professional teams to station and number of optimal days a vaccination station to be functional in a week.

Design/methodology/approach

The authors propose a mixed-integer nonlinear programming model. However, to handle nonlinearity, the authors devise a heuristic and then propose a two-stage mixed-integer linear programming (MILP) formulation to optimize the allocation of vaccination centers or stations to demand groups in the first stage and the allocation of vaccination centers to cold storage links in the second stage. The first stage optimizes the cost and average distance traveled by people to reach the vaccination center, whereas the second stage optimizes the vaccine’s holding and storage and transportation cost by efficiently allocating cold storage links to the centers.

Findings

The model is studied for the real-world case of Chandigarh, India. The results obtained validate that the proposed approach can immensely help government agencies and policymaking body for a successful vaccination drive. The model tries to find a tradeoff between loss due to underutilized medical teams and the distance traveled by a demand group to get the vaccination.

Originality/value

To the best of our knowledge, there are hardly any studies on a vaccination program at such a scale due to sudden outbreaks such as Covid-19.

Details

Benchmarking: An International Journal, vol. 30 no. 9
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 26 January 2024

Mohsen Rajabzadeh, Seyed Meysam Mousavi and Farzad Azimi

This paper investigates a problem in a reverse logistics (RLs) network to decide whether to dispose of unsold goods in primary stores or re-commercialize them in outlet centers…

Abstract

Purpose

This paper investigates a problem in a reverse logistics (RLs) network to decide whether to dispose of unsold goods in primary stores or re-commercialize them in outlet centers. By deducting the costs associated with each policy from its revenue, this study aims to maximize the profit from managing unsold goods.

Design/methodology/approach

A new mixed-integer linear programming model has been developed to address the problem, which considers the selling prices of products in primary and secondary stores and the costs of transportation, cross-docking and returning unwanted items. As a result of uncertain nature of the cost and time parameters, gray numbers are used to deal with it. In addition, an innovative uncertain solution approach for gray programming problems is presented that considers objective function satisfaction level as an indicator of optimism.

Findings

According to the results, higher costs, including transportation, cross-docking and return costs, make sending goods to outlet centers unprofitable and more goods are disposed of in primary stores. Prices in primary and secondary stores heavily influence the number of discarded goods. Higher prices in primary stores result in more disposed of goods, while higher prices in secondary stores result in fewer. As a result of the proposed method, the objective function satisfaction level can be viewed as a measure of optimism.

Originality/value

An integral contribution of this study is developing a new mixed-integer linear programming model for selecting the appropriate goods for re-commercialization and choosing the best outlet center based on the products' price and total profit. Another novelty of the proposed model is considering the matching percentage of boxes with secondary stores’ desired product lists and the probability of returning goods due to non-compliance with delivery dates. Moreover, a new uncertain solution approach is developed to solve mathematical programming problems with gray parameters.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 89