Search results

1 – 10 of 41
Article
Publication date: 6 August 2024

Abdul-Majid Wazwaz, Weaam Alhejaili and Samir El-Tantawy

This study aims to explore a novel model that integrates the Kairat-II equation and Kairat-X equation (K-XE), denoted as the Kairat-II-X (K-II-X) equation. This model demonstrates…

Abstract

Purpose

This study aims to explore a novel model that integrates the Kairat-II equation and Kairat-X equation (K-XE), denoted as the Kairat-II-X (K-II-X) equation. This model demonstrates the connections between the differential geometry of curves and the concept of equivalence.

Design/methodology/approach

The Painlevé analysis shows that the combined K-II-X equation retains the complete Painlevé integrability.

Findings

This study explores multiple soliton (solutions in the form of kink solutions with entirely new dispersion relations and phase shifts.

Research limitations/implications

Hirota’s bilinear technique is used to provide these novel solutions.

Practical implications

This study also provides a diverse range of solutions for the K-II-X equation, including kink, periodic and singular solutions.

Social implications

This study provides formal procedures for analyzing recently developed systems that investigate optical communications, plasma physics, oceans and seas, fluid mechanics and the differential geometry of curves, among other topics.

Originality/value

The study introduces a novel Painlevé integrable model that has been constructed and delivers valuable discoveries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 22 March 2024

Douglas Ramalho Queiroz Pacheco

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Abstract

Purpose

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Design/methodology/approach

We use integration by parts twice to shift smoothness requirements to the test functions, thereby allowing low-regularity data and solutions.

Findings

Various conforming discretisations are presented and tested, with numerical results indicating good accuracy and stability in different types of problems.

Originality/value

This is one of the first articles to propose and test concrete discretisations for very weak variational formulations in primal form. The numerical results, which include a problem based on real MRI data, indicate the potential of very weak finite element methods for tackling problems with low regularity.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2024

Mariano Tomás Fernandez, Sergio Zlotnik and Pedro Diez

This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.

Abstract

Purpose

This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.

Design/methodology/approach

The method produces a thermal field in agreement with a given location of the interface between the Lithosphere and Asthenosphere. It leverages the known location of the interface to enforce the location of a given isotherm while relaxing other constraints known with less precision. The method splits the domain: in the Lithosphere the solution is immediately obtained by standard procedures, while in the Asthenosphere a minimization problem is solved to fulfill continuity of temperatures (strongly imposed) and fluxes at the interface (weakly imposed).

Findings

The numerical methodology, based on the relaxation of the bottom fluxes, correctly recovers the thermal field in the complete domain. To obtain bottom fluxes following geophysical expected values, a constrained minimization strategy is required. The sensitivity of the method could be improved by relaxing other quantities such as lateral fluxes or mantle velocities.

Originality/value

A statement of the energy balance problem in terms of a known immersed condition is presented. A novel numerical procedure based on a domain-splitting strategy allows the solution of the problem. The procedure is tailored to be used within geophysical inversions and provides physically sound solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 March 2024

Hedi Khedhiri and Taher Mkademi

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Abstract

Purpose

In this paper we talk about complex matrix quaternions (biquaternions) and we deal with some abstract methods in mathematical complex matrix analysis.

Design/methodology/approach

We introduce and investigate the complex space HC consisting of all 2 × 2 complex matrices of the form ξ=z1+iw1z2+iw2z2iw2z1+iw1, (z1,w1,z2,w2)C4.

Findings

We develop on HC a new matrix holomorphic structure for which we provide the fundamental operational calculus properties.

Originality/value

We give sufficient and necessary conditions in terms of Cauchy–Riemann type quaternionic differential equations for holomorphicity of a function of one complex matrix variable ξHC. In particular, we show that we have a lot of holomorphic functions of one matrix quaternion variable.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 14 March 2023

Svetlin Georgiev, Aissa Boukarou, Keltoum Bouhali and Khaled Zennir

This paper is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global…

Abstract

Purpose

This paper is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results.

Design/methodology/approach

This paper is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results.

Findings

This paper is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results.

Originality/value

This article is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to propose a new approach for investigation for the existence of at least one global classical solution and the existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on some recent theoretical results.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 26 April 2024

Valentin Marchal, Yicha Zhang, Rémy Lachat, Nadia Labed and François Peyraut

The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation…

Abstract

Purpose

The use of continuous fiber-reinforced filaments improves the mechanical properties obtained with the fused filament fabrication (FFF) process. Yet, there is a lack of simulation tailored tools to assist in the design for additive manufacturing of continuous fiber composites. To build such models, a precise elastic model is required. As the porosity caused by interbead voids remains an important flaw of the process, this paper aims to build an elastic model integrating this aspect.

Design/methodology/approach

To study the amount of porosity, which could be a failure initiator, this study proposes a two step periodic homogenization method. The first step concerns the microscopic scale with a unit cell made of fiber and matrix. The second step is at the mesoscopic scale and combines the elastic material of the first step with the interbead voids. The void content has been set as a parameter of the model. The material models predicted with the periodic homogenization were compared with experimental results.

Findings

The comparison between periodic homogenization results and tensile test results shows a fair agreement between the experimental results and that of the numerical simulation, whatever the fibers’ orientations are. Moreover, a void content reduction has been observed by increasing the crossing angle from one layer to another. An empiric law giving the porosity according to this crossing angle was created. The model and the law can be further used for design evaluation and optimization of continuous fiber-reinforced FFF.

Originality/value

A new elastic model considering interbead voids and its variation with the crossing angle of the fibers has been built. It can be used in simulation tools to design high performance fused filament fabricated composite parts.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 14 August 2024

Yongliang Wang, Yongcai Zhao and Xin Zhang

The purpose of this study is to simulate the tensile and shear types of fractures using the mixed fracture criteria considering the energy evolution based on the dual bilinear…

Abstract

Purpose

The purpose of this study is to simulate the tensile and shear types of fractures using the mixed fracture criteria considering the energy evolution based on the dual bilinear cohesive zone model and investigate the dynamic propagation of tensile and shear fractures induced by an impact load in rock. The propagation of tension and shear at different scales induced by the impact load is also an important aspect of this study.

Design/methodology/approach

In this study, based on the well-developed dual bilinear cohesive zone model and combined finite element-discrete element method, the dynamic propagation of tensile and shear fractures induced by the impact load in rock is investigated. Some key technologies, such as the governing partial differential equations, fracture criteria, numerical discretisation and detection and separation, are introduced to form the global algorithm and procedure. By comparing with the tensile and shear fractures induced by the impact load in rock disc in typical experiments, the effectiveness and reliability of the proposed method are well verified.

Findings

The dynamic propagation of tensile and shear fractures in the laboratory- and engineering-scale rock disc and rock strata are derived. The influence of mesh sensitivity, impact load velocities and load positions are investigated. The larger load velocities may induce larger fracture width and entire failure. When the impact load is applied near the left support constraint boundary, concentrated shear fractures appear around the loading region, as well as induced shear fracture band, which may induce local instability. The proposed method shows good applicability in studying the propagation of tensile and shear fractures under impact loads.

Originality/value

The proposed method can identify fracture propagation via the stress and energy evolution of rock masses under the impact load, which has potential to be extended into the investigation of the mixed fractures and disturbance of in-situ stresses during dynamic strata mining in deep energy development.

1 – 10 of 41