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Abstract

Purpose – This paper is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to
propose a new approach for investigation for the existence of at least one global classical solution and the
existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on
some recent theoretical results.
Design/methodology/approach – This paper is devoted to the generalized Kadomtsev–Petviashvili
I equation. This study aims to propose a new approach for investigation for the existence of at least one global
classical solution and the existence of at least two nonnegative global classical solutions. The main arguments
in this paper are based on some recent theoretical results.
Findings – This paper is devoted to the generalized Kadomtsev–Petviashvili I equation. This study aims to
propose a new approach for investigation for the existence of at least one global classical solution and the
existence of at least two nonnegative global classical solutions. The main arguments in this paper are based on
some recent theoretical results.
Originality/value –This article is devoted to the generalized Kadomtsev–Petviashvili I equation. This study
aims to propose a new approach for investigation for the existence of at least one global classical solution and
the existence of at least two nonnegative global classical solutions. Themain arguments in this paper are based
on some recent theoretical results.
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1. Introduction
The Soviet physicists Boris Kadomtsev and Vladimir Petviashvili derived the equation that
now bears their name, the Kadomtsev–Petviashvili equation (shortly the KP equation), as a
model that describes the evolution of long ion-acoustic waves of small amplitude propagating
in plasmas under the effect of long transverse perturbations. A particular case of this model is
the Korteweg-de Vries (KdV) equation in the case of the absence of transverse dynamics. The
KP equation is an extension of the classical KdV equation to two spatial dimensions, and it

Generalized
Kadomtsev–
Petviashvili I

equations

©Svetlin Georgiev, Aissa Boukarou, KeltoumBouhali and Khaled Zennir. Published in the Arab Journal
of Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the
Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and
create derivative works of this article (for both commercial and non-commercial purposes), subject to full
attribution to the original publication and authors. The full terms of this license may be seen at http://
creativecommons.org/licences/by/4.0/legalcode

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1319-5166.htm

Received 18 August 2022
Revised 21 November 2022
Accepted 8 January 2023

Arab Journal of Mathematical
Sciences

Emerald Publishing Limited
e-ISSN: 2588-9214
p-ISSN: 1319-5166

DOI 10.1108/AJMS-08-2022-0195

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/AJMS-08-2022-0195


was used by Ablowitz and Segur for modeling of surface and internal water waves and for
modeling in nonlinear optics, as well as in other physical settings.

The KP equation I can consider as a nonlinear partial differential equation in two spatial
and one temporal coordinate. There are two distinct versions of theKP equation, which can be
written in a normalized form in the following way:

ut þ 6uux þ uxxxð Þx þ 3σ2uyy ¼ 0;

where u 5 u (x, y, t) is a scalar function, x and y are the longitudinal and transverse spatial
coordinates, subscripts x, y, t denote partial derivatives and σ2 5 ±1. When σ 5 1, this
equation is known as the KPII equation, and in this case, it models water waves with small
surface tension. In the case when σ 5�1, this equation is known as the KPI equation, and in
this case, it models waves in thin films with high surface tension. In the references, the
equation is often written with different coefficients in front of the various terms. Note that the
particular values are inessential and they can be modified by appropriate rescaling of
the dependent variables and of the independent variables.

Thispaper is devoted to the IVP for thegeneralizedKadomtsev–Petviashvilli I (gKP I) equation

vx vtuþ uvxuþ μ2vlxu
� �þ νvyyu ¼ 0; t > 0; ðx; yÞ∈R2;

uð0; x; yÞ ¼ u0ðx; yÞ; ðx; yÞ∈R2;
(1.1)

where

H1. l ∈N, l ≥ 5, u0 ∈ Clþ1ðR2Þ, ju0(x, y)j ≤ B, ðx; yÞ∈R2, B > 0 is a given constant.

H2. ν 5 ±1, μ > 0.

In the particular case, when l5 5, equation (1.1) is reduced to the fifth-order KP I equation and
in the case l 5 3, equation (1.1) is reduced to the KP equation.

In Ref. [1], when l5 3, the authors the local well-posedness for the Cauchy problem for the
KP equation in certain Sobolev spaces. Generically, the solution of the KP equation develops a
singularity in finite time t. It is discussed in Refs [2, 3] that this singularity develops at a point
where the derivatives become divergent in all directions except one.

In Ref. [4], the authors established the local well-posedness of the Cauchy problem for the
gKP I equation in anisotropic Sobolev spacesHs1 ;s2ðRÞwhen s1 > − α− 1

4
; s2 ≥ 0and α≥ 4, and

global well-posedness in Hs1 ;0ðRÞ when s1 > −
ðα− 1Þð3α− 4Þ

4ð5αþ3Þ and 4 ≤ α ≤ 5, as well as when

s1 > −
αð3α− 4Þ
4ð5αþ4Þ and α > 5.

Mechanical systemswith impact, heartbeats, blood flows, population dynamics, industrial
robotics, biotechnology, economics, etc. are real-world and applied science phenomena which
are abruptly changed in their states at some time instants due to short time perturbations
whose duration is negligible in comparison with the duration of these phenomena. A natural
framework for mathematical simulation of such phenomena is differential equations when
more factors are taken into account, please see Refs [5–8].

This paper aims to investigate the IVP (1.1) for the existence of at least one and at least two
global classical solutions. In addition of (H1) and (H2), suppose

H3. g ∈ Cð 0;∞½ Þ3R2Þ is a positive function on 0;∞½ Þ3R2 such that

gð0; x; yÞ ¼ gðt; 0; yÞ ¼ gðt; x; 0Þ ¼ 0; ðt; x; yÞ∈ 0;∞½ Þ3R2;

and
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22lþ4ðl þ 1Þ!ð1þ tÞ2
 Xlþ1

r¼0

jxjr
! Xlþ1

r¼0

jyjr
!

Z t

0

Z x

0

Z y

0

gðt1; x1; y1Þdy1dx1
����

����dt1 ≤A; ðt; x; yÞ∈ 0;∞½ Þ3R2;

for some constant A > 0, and

H4. e ∈ (0, 1), A and B satisfy the inequalities eB1(1 þ A) < B and AB1 < 1.

H5. Let m > 0 be large enough and A, B, r, L, R1 be positive constants that satisfy the
following conditions

r < L < R1; e > 0; R1 >
2

5m
þ 1

� �
L; AB1 <

L

5
:

In the last section, wewill give an example of a function g and constants e,A,B,B1, r,L,R1 and
m that satisfy (H3)–(H5).

With X ¼ C1ð 0;∞½ Þ3 Clþ1ðR2ÞÞ, we denote the space of all continuous functions on

0;∞½ Þ3R2 so that ut, v
r
xu, vtxu, vyu, v

2
yu, r 5 1, . . ., l þ 1, exist and are continuous

on 0;∞½ Þ3R2.
Our main result for existence of at least one global classical solution is as follows.

Theorem 1.1. Suppose that (H1)–(H4) hold. Then the IVP (1.1) has at least one
solution u ∈ X.

Next theorem is our result for the existence of at least two global nonnegative classical
solutions.

Theorem 1.2. Suppose that (H1)–(H3) and (H5) hold. Then the IVP (1.1) has at least two
nonnegative solutions u1, u2 ∈ X.

The main idea for the proof of our main results is as follows. First, we find an integral
representation of the solutions of the IVP (1.1). Then we construct a pair of operators so that
any fixed point of their sum is a solution of the IVP (1.1). We find some a-priori estimates of
the defined operators and using some fixed point theorems we conclude the existence of at
least one global classical solution and the existence of at least two nonnegative classical
solutions of the IVP (1.1).

The paper is organized as follows. In the next section, we give some auxiliary results. In
Section 3, we give some preliminary results. In Section 4, we will prove our main results. In
Section 5, we give an example to illustrate our main results.

2. Auxiliary results
In this section, as in Ref. [9], wewill give some basic definitions and facts whichwill be used in
this paper. Moreover, we will formulate the basic fixed-point theorems which we explore to
prove our main results. For more details, we refer the reader to the papers [10–14] and
references therein. To prove the existence of at least one global classical solution for the IVP
(1.1), we will use the following fixed-point theorem.

Theorem 2.1. ([9, 12, 13]) Suppose that the constants e and B are positive constants. Let E be
a Banach space and define the set X 5 {x ∈ E: kxk ≤ B} and the operator Tx 5 �ex, x ∈ X.
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Assume that the operator S : X→ E is a continuous operator and the set (I� S)(X) resides in a
compact subset of E. Let also,

fx∈E : x ¼ λðI � SÞx; kxk ¼ Bg ¼ ∅ (2.1)

for any λ∈ 0; 1
e

� �
. Then there exists x* ∈ X for which one has

Tx* þ Sx* ¼ 0:

Below, assume thatX is a real Banach space. Now, wewill recall the definition of a completely
continuous operator in a Banach space.

Definition 2.2. [9] Amap K :X→X is called a completely continuous map if it is continuous
and it maps any bounded set into a relatively compact set.

For completeness, wewill recall the definition of the Kuratowski measure of noncompactness,
which will be used to be define l-set contraction mappings when l ∈N0.

Definition 2.3. [9] With ΩX we will denote the class of all bounded sets of X. Then the
Kuratowski measure of noncompactness α : ΩX → 0;∞½ Þ is defined by

αðY Þ ¼ inf δ > 0 : Y ¼
[m
j¼1

Yj and diamðYjÞ≤ δ; j∈ f1; . . . ;mg
( )

:

here, with diam (Yj)5 sup{kx� ykX : x, y∈Yj}wewill denote the diameter of Yj, j∈ {1, . . .,m}.

For the main properties of the measure of noncompactness, we refer the reader to Ref. [10].
Now, we are ready to define an l-set contraction in a Banach space for any l ∈N0.

Definition 2.4. [9] Amap K :X→X is called an l-set contraction if it is continuous, bounded
and there exists a constant l ≥ 0 for which one has the following inequality

αðKðY ÞÞ≤ lαðY Þ

for any bounded set Y ⊂ X. The map K will be called a strict set contraction map if l < 1.

Note that any completely continuousmappingK :X→X is a 0-set contraction (seeRef. [11], p. 264).
Next, for our main results, we have a need for a definition of an expansive operator.

Definition 2.5. [9] Let X andY be real Banach spaces. AmapK :X→Y is called expansive if
there exists a constant h > 1 for which one has the following inequality

kKx� KykY ≥ hkx� ykX
for any x, y ∈ X.

Now, we will recall the definition of a cone in a Banach space.

Definition 2.6. [9] A closed, convex set P in X is said to be cone if

(1) αx∈P for any α ≥ 0 and for any x∈P,
(2) x; − x∈P implies x 5 0.

Denote P* ¼ Pnf0g. The next result is a fixed-point theorem which we will use to prove the
existence of at least two nonnegative global classical solutions of the IVP (1.1). For its proof,
we refer the reader to the paper [14].
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Theorem 2.7. LetP be a cone of a Banach space E;Ω a subset ofP and U1,U2 and U3 three

open bounded subsets of P such that U 1 ⊂U 2 ⊂U 3 and 0 ∈ U1. Assume that T : Ω→P is an

expansivemapping with constant h>1, S : U 3 →E is a k-set contraction with 0≤ k< h� 1 and

SðU 3Þ⊂ ðI −TÞðΩÞ. Suppose that ðU 2nU 1Þ \ Ω≠∅; ðU 3nU 2Þ \ Ω≠∅, and there exists

u0 ∈P* such that the following conditions hold:

(1) Sx ≠ (I � T)(x � λu0), for all λ > 0 and x ∈ vU1 ∩ (Ω þ λu0),

(2) There exists e ≥ 0 such that Sx ≠ (I � T)(λx), for all λ ≥ 1 þ e, x ∈ vU2 and λx ∈ Ω,

(3) Sx ≠ (I � T)(x � λu0), for all λ > 0 and x ∈ vU3 ∩ (Ω þ λu0).
Then T þ S has at least two non-zero fixed points x1; x2 ∈P such that

x1 ∈ vU 2 \Ω and x2 ∈
�
U 3nU 2

�
\ Ω

or

x1 ∈ ðU 2nU 1Þ \Ω and x2 ∈
�
U 3nU 2

�
\ Ω:

3. Preliminary results
In this section, we will define suitable operators and we will deduct some a-priori estimates
which we will use to prove our main results. Let X be endowed with the norm

kuk ¼ max sup
ðt;x;yÞ∈ 0;∞½ Þ3R2

juðt; x; yÞj;
8<
:
sup

ðt;x;yÞ∈ 0;∞½ Þ3R2

jvtuðt; x; yÞj;

sup
ðt;x;yÞ∈ 0;∞½ Þ3R2

jvrxuðt; x; yÞj;

sup
ðt;x;yÞ∈ 0;∞½ Þ3R2

jvkyuðt; x; yÞj;

r ¼ 1; . . . ; l þ 1; k ¼ 1; 2; sup
ðt;x;yÞ∈ 0;∞½ Þ3R2

jvtxuðt; x; yÞj
9=
;;

provided it exists. For u ∈ X, define the operator

S1uðt; x; yÞ ¼ uðt; x; yÞ � u0ðx; yÞ

þ
Z t

0

�vtuðt1; x; yÞ þ vtvxuðt1; x; yÞ þ vxuðt1; x; yÞð Þ2
�

þuðt1; x; yÞvxxuðt1; x; yÞ
þμ2vlþ1

x uðt1; x; yÞ þ νvyyuðt1; x; yÞ
�
dt1;

ðt; x; yÞ∈ 0;∞½ Þ3R2:
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In the next lemma, we will establish that any solution of an integral equation is a solution
to the IVP (1.1).

Lemma 3.1. Suppose that (H1) and (H2) hold. Let u ∈ X be a solution of the equation

S1uðt; x; yÞ ¼ 0; ðt; x; yÞ∈ 0;∞½ Þ3R2: (3.1)

Then it is a solution of the IVP (1.1).

Proof. Let u∈X be a solution of equation (3.1). Using the definition of S1, we get the following
integral equation

0 ¼ uðt; x; yÞ � u0ðx; yÞ

þ
Z t

0

�vtuðt1; x; yÞ þ vtvxuðt1; x; yÞ þ vxuðt1; x; yÞð Þ2
�

þuðt1; x; yÞvxxuðt1; x; yÞ
þμ2vlþ1

x uðt1; x; yÞ þ νvyyuðt1; x; yÞ
�
dt1; ðt; x; yÞ∈ 0;∞½ Þ3R2:

For the last integral equation, we differentiate one time with respect to t and we get the
following integral equation

0 ¼ vtuðt; x; yÞ
�vtuðt; x; yÞ þ vtvxuðt; x; yÞ þ vxuðt; x; yÞð Þ2
þuðt; x; yÞvxxuðt; x; yÞ
þμ2vlþ1

x uðt; x; yÞ þ νvyyuðt; x; yÞ; ðt; x; yÞ∈ 0;∞½ Þ3R2:

Therefore

0 ¼ vtvxuðt; x; yÞ þ vxuðt; x; yÞð Þ2
þuðt; x; yÞvxxuðt; x; yÞ
þμ2vlþ1

x uðt; x; yÞ þ νvyyuðt; x; yÞ; ðt; x; yÞ∈ 0;∞½ Þ3R2:

Thus, u satisfies the first equation of (1.1). Now, we put t 5 0 and we arrive at the equality

uð0; x; yÞ ¼ u0ðx; yÞ; ðx; yÞ∈R2:

From here, we conclude that u satisfies the second equation of (1.1). Consequently, u is a
solution to the IVP (1.1). This completes the proof. ,

Now, we will give an a-priori estimate of the operator S1. For this aim, we define the
constant

B1 ¼ 2þ ��ν��þ μ2
� �

Bþ 2B2:

Lemma 3.2. Suppose that (H1) and (H2) hold. Let u ∈ X be such that kuk ≤ b, for some
constant b > 1. Then one has

jS1uðt; x; yÞj≤B1ð1þ tÞ; ðt; x; yÞ∈ 0;∞½ Þ3R2:

Proof. By the definition of the operator S1, one gets
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jS1uðt;xÞj ¼ uðt;x;yÞ� u0ðx;yÞj

þ
Z t

0

�vtuðt1;x;yÞþ vtvxuðt1;x;yÞþ vxuðt1;x;yÞð Þ2
�

þuðt1;x;yÞvxxuðt1;x;yÞ
þμ2vlþ1

x uðt1;x;yÞþ νvyyuðt1;x;yÞ
�
dt1
��

≤ juðt;x;yÞjþ ju0ðx;yÞj

þ
Z t

0

jvtuðt1;x;yÞjþ jvtvxuðt1;x;yÞjþ vxuðt1;x;yÞð Þ2
�

þjuðt1;x;yÞkvxxuðt1;x;yÞj
þμ2jvlþ1

x uðt1;x;yÞjþ jνjjvyyuðt1;x;yÞj
�
dt1

≤ 2Bþ
Z t

0

BþBþB2 þB2 þ μ2Bþ jνjB� �
dt1

¼ 2Bþ 2þ jνjþ μ2
� �

Bþ 2B2
� �

t

≤ B1ð1þ tÞ; ðt;x;yÞ∈ 0;∞½ Þ3R2:

This completes the proof. ,

For u ∈ X, we define the operator

S2uðt; x; yÞ ¼
Z t

0

Z x

0

Z y

0

ðt � t1Þðx� x1Þlþ1ðy� y1Þlþ1
gðt1; x1ÞS1uðt1; x1; y1Þdy1dx1dt1;

ðt; x; yÞ∈ 0;∞½ Þ3R2. In the next lemma, we will give an estimate of the norm of the
operator S2.

Lemma 3.3. Suppose that (H1)–(H3) hold. For u ∈ X, kuk ≤ B, one has the following estimate

kS2uk≤AB1:

Proof.Wewill use the inequality (vþw)q≤ 2q(vqþwq), q>0, v,w>0, to find estimates for S2u
and its derivatives. Then, we will deduct the desired estimate for the norm of S2u. We have

jS2uðt;x;yÞj ¼
Z t

0

Z x

0

Z y

0

ðt� t1Þðx�x1Þlþ1ðy� y1Þlþ1
gðt1;x1ÞS1uðt1;x1;y1Þdy1dx1dt1

����
����

≤

Z t

0

Z x

0

Z y

0

ðt� t1Þ
����x�x1jlþ1jy� y1jlþ1

gðt1;x1ÞjS1uðt1;x1;y1Þjdy1dx1
����

����dt1
≤ B1ð1þ tÞ

Z t

0

Z x

0

Z y

0

ðt� t1Þjx�x1jlþ1jy� y1jlþ1
gðt1;x1Þdy1dx1

����
����dt1

≤ 22lþ4B1ð1þ tÞ2jxjlþ1jyjlþ1

Z t

0

Z x

0

Z y

0

gðt1;x1;y1Þdy1dx1
����

����dt1
≤ ðlþ1Þ!22lþ4B1ð1þ tÞ2

Xlþ1

r¼0

jxjr
 ! Xlþ1

r¼0

jyjr
 !

3

Z t

0

Z x

0

Z y

0

gðt1;x1;y1Þdy1dx1
����

����dt1
≤ AB1; ðt;x;yÞ∈ 0;∞½ Þ3R2:

Now, we will estimate the first derivative with respect to t of S2u. For it, one has
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jvtS2uðt; x; yÞj ¼
Z t

0

Z x

0

Z y

0

ðx� x1Þlþ1ðy� y1Þlþ1
gðt1; x1ÞS1uðt1; x1; y1Þdy1dx1dt1

����
����

≤

Z t

0

Z x

0

Z y

0

jx� x1jlþ1jy� y1jlþ1
gðt1; x1ÞjS1uðt1; x1; y1Þjdy1dx1

����
����dt1

≤ B1

Z t

0

Z x

0

Z y

0

jx� x1jlþ1jy� y1jlþ1
gðt1; x1Þdy1dx1

����
����dt1

≤ 22lþ4B1ð1þ tÞ2jxj2lþ1jyj2lþ1

Z t

0

Z x

0

Z y

0

gðt1; x1; y1Þdy1dx1
����

����dt1
≤ ðl þ 1Þ!22lþ4B1ð1þ tÞ2

Xlþ1

r¼0

jxjr
 ! Xlþ1

r¼0

jyjr
 !

3

Z t

0

Z x

0

Z y

0

gðt1; x1; y1Þdy1dx1
����

����dt1
≤ AB1; ðt; x; yÞ∈ 0;∞½ Þ3R2:

For the derivatives of S2u with respect to x, one deduct

jvrxS2uðt;x;yÞj ¼ ðlþ1Þ...ðl�rþ2Þ

3

Z t

0

Z x

0

Z y

0

ðt�t1Þðx�x1Þl−rþ1ðy�y1Þlþ1
gðt1;x1ÞS1uðt1;x1;y1Þdy1dx1dt1

����
����

≤ ðlþ1Þ...ðl�rþ2Þ

3

Z t

0

Z x

0

Z y

0

ðt�t1Þjx�x1jl−rþ1jy�y1jlþ1
gðt1;x1ÞjS1uðt1;x1;y1Þjdy1dx1

����
����dt1

≤ ðlþ1Þ!B1ð1þtÞ
Z t

0

Z x

0

Z y

0

ðt�t1Þ
����x�x1jl−rþ1jy�y1jlþ1

gðt1;x1Þdy1dx1
����

����dt1
≤ ðlþ1Þ!22l−rþ4B1ð1þtÞ2jxjl−rþ1jyjlþ1

Z t

0

Z x

0

Z y

0

gðt1;x1;y1Þdy1dx1
����

����dt1
≤ ðlþ1Þ!22lþ4B1ð1þtÞ2

Xlþ1

r¼0

jxjr
 ! Xlþ1

r¼0

jyjr
 !

3

Z t

0

Z x

0

Z y

0

gðt1;x1;y1Þdy1dx1
����

����dt1
≤ AB1; ðt;x;yÞ∈ 0;∞½ Þ3R2; r¼1;...;lþ1:

As above, one can get the following estimates

jvkyS2uðt; x; yÞj≤AB1; ðt; x; yÞ∈ 0;∞½ Þ3R2; k ¼ 1; 2:

Note that for the mixed derivative vtxS2u, one has
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jvtxS2uðt;x;yÞj ¼ ðlþ1Þ
Z t

0

Z x

0

Z y

0

ðx�x1Þlðy� y1Þlþ1
gðt1;x1ÞS1uðt1;x1;y1Þdy1dx1dt1

����
����

≤ ðlþ1Þ
Z t

0

Z x

0

Z y

0

jx�x1jl jy� y1jlþ1
gðt1;x1ÞjS1uðt1;x1;y1Þjdy1dx1

����
����dt1

≤ ðlþ1ÞB1ð1þ tÞ
Z t

0

Z x

0

Z y

0

jx�x1jl jy� y1jlþ1
gðt1;x1Þdy1dx1

����
����dt1

≤ ðlþ1Þ!B12
2lþ3B1ð1þ tÞ2jxjl ylþ1

Z t

0

Z x

0

Z y

0

gðt1;x1;y1Þdy1dx1
����

����dt1
≤ ðlþ1Þ!22lþ4B1ð1þ tÞ2

Xlþ1

r¼0

jxjr
 ! Xlþ1

r¼0

jyjr
 !

3

Z t

0

Z x

0

Z y

0

gðt1;x1;y1Þdy1dx1
����

����dt1
≤ AB1; ðt;x;yÞ∈ 0;∞½ Þ3R2:

Thus,
kS2uk≤AB1:

This completes the proof. ,

In the next result, wewill give other integral equationswhose solutions are solutions to the
IVP (1.1).

Lemma 3.4. Suppose (H1), (H2) and let g ∈ Cð 0;∞½ Þ3RÞ be a positive function almost

everywhere on 0;∞½ Þ3R2. If u ∈ X satisfies the equation

S2uðt; x; yÞ ¼ 0; ðt; x; yÞ∈ 0;∞½ Þ3R2; (3.2)

then u is a solution to the IVP (1.1).

Proof.We differentiate two times with respect to t, five times with respect to x and five times
with respect to y equation (3.2) and we find

gðt; x; yÞS1uðt; x; yÞ ¼ 0; ðt; x; yÞ∈ 0;∞½ Þ3 �R2nffx ¼ 0g∪ fy ¼ 0gg�;
whereupon

S1uðt; x; yÞ ¼ 0; ðt; x; yÞ∈ 0;∞½ Þ3 �R2nffx ¼ 0g∪ fy ¼ 0gg�:
since S1u($, $, $) is a continuous function on 0;∞½ Þ3R2, we get

0 ¼ lim
t→0

S1uðt; 0; 0Þ ¼ lim
x→0

S1uð0; x; 0Þ ¼ lim
y→0

S1u ð0; 0; yÞð
¼ lim

t;x→0
S1uðt; x; 0Þ ¼ lim

t;y→0
S1uðt; 0; yÞ ¼ lim

x;y→0
S1uð0; x; yÞ

¼ lim
t;x;y→0

S1uðt; x; yÞ:
thus,

S1uðt; x; yÞ ¼ 0; ðt; x; yÞ∈ 0;∞½ Þ3R2:

hence and Lemma 3.1, we conclude that u is a solution to the IVP (1.1). This completes
the proof. ,
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4. Proof of the main results
4.1 Proof of Theorem 1.1

Let
~~~Y denote the set of all equi-continuous families inXwith respect to the norm k $k. Let also,

~~Y ¼ ~~~Y be the closure of
~~~Y , ~Y ¼ ~~Y ∪ fu0g,

Y ¼
n
u∈ ~Y : kuk≤B

o
:

Note that Y is a compact set in X. For u ∈ X, define the operators

Tuðt; x; yÞ ¼ �euðt; x; yÞ;
Suðt; x; yÞ ¼ uðt; x; yÞ þ euðt; x; yÞ þ eS2uðt; x; yÞ; ðt; x; yÞ∈ 0;∞½ Þ3R2:

For u ∈ Y, using Lemma 3.3, we have

kðI � SÞuk ¼ keu� eS2uk
≤ ekuk þ ekS2uk
≤ eB1 þ eAB1

¼ eB1ð1þ AÞ
< B

Thus, S : Y→ E is continuous and (I� S)(Y) resides in a compact subset of E. Now, suppose
that there is a u ∈ E so that kuk 5 B and

u ¼ λðI � SÞu;

or
1

λ
u ¼ ðI � SÞu ¼ −eu� eS2u;

or
1

λ
þ e

� �
u ¼ −eS2u;

for some λ∈ 0; 1
e

� �
. Hence, kS2uk ≤ AB1 < B,

eB <
1

λ
þ e

� �
B ¼ 1

λ
þ e

� �
kuk ¼ ekS2uk < eB;

which is a contradiction. Hence Theorem 2.1 follows that the operatorTþ S has a fixed point
u* ∈ Y. Therefore,

u*ðt; x; yÞ ¼ Tu*ðt; x; yÞ þ Su*ðt; x; yÞ
¼ �eu*ðt; x; yÞ þ u*ðt; x; yÞ þ eu*ðt; x; yÞ þ eS2u*ðt; x; yÞ;

ðt; x; yÞ∈ 0;∞½ Þ3R2;

where

0 ¼ S2u*ðt; x; yÞ; ðt; x; yÞ∈ 0;∞½ Þ3R2:

from here and from Lemma 3.4, it follows that u is a solution to the IVP (1.1). This completes
the proof.
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4.2 Proof of Theorem 1.2
Let X be the space used in the previous section. Let also,

~P ¼ 	u∈X : u≥ 0 on 0;∞½ Þ3R2


:

with P we will denote the set of all equi-continuous families in ~P. For v ∈ X, define the
operators

T1vðt; x; yÞ ¼ ð1þmeÞvðt; x; yÞ � e
L

10
;

S3vðt; x; yÞ ¼ �eS2vðt; x; yÞ �mevðt; x; yÞ � e
L

10
;

t ∈ 0;∞½ Þ, ðx; yÞ∈R2. Note that any fixed point v ∈ X of the operator T1þ S3 is a solution to
the IVP (1.1). Define

U 1 ¼ Pr ¼ fv∈P : kvk < rg;
U 2 ¼ PL ¼ fv∈P : kvk < Lg;
U 3 ¼ PR1

¼ fv∈P : kvk < R1g;

R2 ¼ R1 þ A

m
B1 þ L

5m
;

Ω ¼ PR2
¼ fv∈P : kvk≤R2g:

(1) Let v1, v2 ∈ Ω. Then, we get

kT1v1 � T1v2k ¼ ð1þmεÞkv1 � v2k:

from the last equality, we conclude that the operatorT1 :Ω→X is an expansive operator with
a constant h 5 1 þ m« > 1.

(2) Take v∈PR1
arbitrarily. Then

kS3vk ≤ εkS2vk þmεkvk þ ε
L

10

≤ ε AB1 þmR1 þ L

10

� �
:

from the last inequality, we conclude that the set S3ðPR1
Þ is uniformly bounded. Because the

operator S3 : PR1
→X is a continuous operator, we get that S3ðPR1

Þ is equi-continuous.

Therefore, the operator S3 : PR1
→X is a 0-set contraction.

(3) Take v1 ∈PR1
arbitrarily. Set

v2 ¼ v1 þ 1

m
S2v1 þ L

5m
:

note that S2v1 þ L
5
≥ 0 on 0;∞½ Þ3R2. Therefore, v2 ≥ 0 on 0;∞½ Þ3R2 and we have the

following estimate
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kv2k ≤ kv1k þ 1

m
kS2v1k þ L

5m

≤ R1 þ A

m
B1 þ L

5m

¼ R2:

consequently v2 ∈ Ω. Moreover,

−εmv2 ¼ −εmv1 � εS2v1 � ε
L

10
� ε

L

10

or

ðI � T1Þv2 ¼ �εmv2 þ ε
L

10

¼ S3v1:

Therefore, S3ðPR1
Þ⊂ ðI −T1ÞðΩÞ.

(4) Suppose that for any v0 ∈P*, there exist λ > 0 and z∈ vPr \ ðΩþ λv0Þ or
z∈ vPR1

\ ðΩþ λv0Þ such that

S3z ¼ ðI � T1Þðz� λv0Þ:

hence,

−eS2z�mez� e
L

10
¼ −meðz� λv0Þ þ e

L

10

or

−S2z ¼ λmv0 þ L

5
:

from the last equation, we arrive at

kS2zk ¼ λmv0 þ L

5

����
���� >

L

5
:

this is a contradiction.

(5) Assume that for any e1 ≥ 0 small enough there exist a x1 ∈ vPL and λ1 ≥ 1þ e1 such
that λ1x1 ∈PR1

and

S3x1 ¼ ðI � T1Þðλ1x1Þ: (4.1)

When e1 >
2
5m
, one has x1 ∈ vPL, λ1x1 ∈PR1

, λ1 ≥ 1 þ e1 and (4.1) holds. Since x1 ∈ vPL and
λ1x1 ∈PR1

, it follows that

2

5m
þ 1

� �
L < λ1L ¼ λ1kx1k≤R1:

in addition,
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−eS2x1 �mex1 � e
L

10
¼ −λ1mex1 þ e

L

10
;

or

S2x1 þ L

5
¼ ðλ1 � 1Þmx1:

hence,

2
L

5
≥ S2x1 þ L

5

����
���� ¼ ðλ1 � 1Þmkx1k ¼ ðλ1 � 1ÞmL;

and
2

5m
þ 1≥ λ1;

which is a contradiction.

Therefore, all conditions of Theorem 2.7 hold and the IVP (1.1) has at least two solutions u1
and u2 so that

ku1k ¼ L < ku2k < R1;

or

r < ku1k < L < ku2k < R1:

5. An example
Below, we will illustrate our main results. Let B 5 μ 5 ν 5 1 and

R1 ¼ 10; L ¼ 5; r ¼ 4; m ¼ 1050; A ¼ 1

5B1

; e ¼ 1

5B1ð1þ AÞ :

let also,

u0ðx; yÞ ¼ 1

1þ x2 þ y2
; ðx; yÞ∈R2:

then

B1 ¼ 2þ 2þ 2 ¼ 6;

and

AB1 ¼ 1

5
< B; eB1ð1þ AÞ < 1;

i.e. (H4) holds. Next,
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r < L < R1; e > 0; R1 >
2

5m
þ 1

� �
L; AB1 <

L

5
:

i.e. (H5) holds. Take

hðsÞ ¼ log
1þ slþ1

ffiffiffi
2

p þ s2lþ2

1� slþ1
ffiffiffi
2

p þ s2lþ2
; lðsÞ ¼ arctan

slþ1
ffiffiffi
2

p

1� s2lþ2
; s∈R; s≠±1:

then

h0ðsÞ ¼ 2
ffiffiffi
2

p ðl þ 1Þsl�1� s2lþ2
��

1� slþ1
ffiffiffi
2

p
þ s2lþ2

��
1� slþ1

ffiffiffi
2

p
þ s2lþ2

�;

l
0ðsÞ ¼ ðl þ 1Þ ffiffiffi

2
p

sl
�
1þ s2lþ2

�
1þ s4lþ4

; s∈R; s≠±1:

therefore

lim
s→±∞

Xlþ1

r¼0

srhðsÞ¼ lim
s→±∞

hðsÞ
1Xlþ1

r¼0
sr

¼ lim
s→±∞

h0ðsÞ

−

Xl

r¼0
ðrþ1ÞsrXlþ1

r¼0
sr

� �2

¼− lim
s→±∞

2
ffiffiffi
2

p ðlþ1Þsl�1� s2lþ2
� Plþ1

r¼0s
r

� �2
Pl

r¼0ðrþ1Þsr
� ��

1� slþ1
ffiffiffi
2

p þ s2lþ2

��
1� slþ1

ffiffiffi
2

p þ s2lþ2

�≠±∞

and

lim
s→±∞

Xlþ1

r¼0

srlðsÞ ¼ lim
s→±∞

lðsÞ
1Xlþ1

r¼0
sr

¼ lim
s→±∞

l
0ðsÞ

−

Xl

r¼0
ðrþ1ÞsrXlþ1

r¼0
sr

� �2

¼ − lim
s→±∞

ðl þ 1Þ ffiffiffi
2

p
sl
�
1þ s2lþ2

� Plþ1
r¼0s

r
� �2

1þ s4lþ4ð Þ Pl

r¼0ðr þ 1Þsr
� � ≠±∞:

consequently

�∞ < lim
s→±∞

Xlþ1

r¼0

sr

 !
hðsÞ < ∞;

�∞ < lim
s→±∞

Xlþ1

r¼0

sr

 !
lðsÞ < ∞:

hence, there exists a positive constant C1 so that
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Xlþ1

r¼0

jsjr 1

ð4l þ 4Þ ffiffiffi
2

p log
1þ slþ1

ffiffiffi
2

p
þ s2lþ2

1� slþ1
ffiffiffi
2

p
þ s2lþ2

þ 1

ð2l þ 2Þ ffiffiffi
2

p arctan
slþ1

ffiffiffi
2

p

1� s2lþ2

 !

≤ C1;

s∈R. Note that lim
s→±1

lðsÞ ¼ π
2
and by Ref. [15] (p. 707, Integral 79), we have

Z
dz

1þ z4
¼ 1

4
ffiffiffi
2

p log
1þ z

ffiffiffi
2

p þ z2

1� z
ffiffiffi
2

p þ z2
þ 1

2
ffiffiffi
2

p arctan
z
ffiffiffi
2

p

1� z2
:

let

QðsÞ ¼ sl

ð1þ s4lþ4Þ; s∈R;

and

g1ðt; x; yÞ ¼ QðtÞQðxÞQðyÞ; t ∈ 0;∞½ Þ; ðx; yÞ∈R2:

then there exists a constant C > 0 such that

22lþ4ðl þ 1Þ!ð1þ tÞ2
Xlþ1

r¼0

jxjr
 ! Xlþ1

r¼0

jyjr
 !

3

Z t

0

Z x

0

Z y

0

g1ðt1; x1; y1Þdy1dx1
����

����dt1 ≤C;

ðt; x; yÞ∈ ½0;∞Þ3R2:

let

gðt; x; yÞ ¼ A

C
g1ðt; x; yÞ; ðt; x; yÞ∈ 0;∞½ Þ3R3:

then

22lþ4ðl þ 1Þ!ð1þ tÞ2
Xlþ1

r¼0

jxjr
 ! Xlþ1

r¼0

jyjr
 !

3

Z t

0

Z x

0

Z y

0

gðt1; x1; y1Þdy1dx1
����

����dt1 ≤A; ðt; x; yÞ∈ ½0;∞Þ3R2:

i.e. (H3), holds. Therefore, for the IVP
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vx vtuþ uvxuþ μ2vlxu
� �þ νvyyu ¼ 0; t > 0; ðx; yÞ∈R2;

uð0; x; yÞ ¼ 1

1þ x2 þ y2
; ðx; yÞ∈R2;

are fulfilled all conditions of Theorem 1.1 and Theorem 1.2.
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