Search results

1 – 7 of 7
Article
Publication date: 1 November 2022

Yongliang Wang and Xin Zhang

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources…

Abstract

Purpose

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources recovery rate. Due to the complexity of fracture network induced by the random morphology and type of fluid-driven fractures, controlling and optimising its mechanisms is challenging. This paper aims to study the types of multiscale mode I/II fractures, the fluid-driven propagation of multiscale tensile and shear fractures need to be studied.

Design/methodology/approach

A dual bilinear cohesive zone model (CZM) based on energy evolution was introduced to detect the initiation and propagation of fluid-driven tensile and shear fractures. The model overcomes the limitations of classical linear fracture mechanics, such as the stress singularity at the fracture tip, and considers the important role of fracture surface behaviour in the shear activation. The bilinear cohesive criterion based on the energy evolution criterion can reflect the formation mechanism of complex fracture networks objectively and accurately. Considering the hydro-mechanical (HM) coupling and leak-off effects, the combined finite element-discrete element-finite volume approach was introduced and implemented successfully, and the results showed that the models considering HM coupling and leak-off effects could form a more complex fracture network. The multiscale (laboratory- and engineering-scale) Mode I/II fractures can be simulated in hydrofracturing process.

Findings

Based on the proposed method, the accuracy and applicability of the algorithm were verified by comparing the analytical solution of KGD and PKN models. The effects of different in situ stresses and flow rates on the dynamic propagation of hydraulic fractures at laboratory and engineering scales were investigated. when the ratio of in situ stress is small, the fracture propagation direction is not affected, and the fracture morphology is a cross-type fracture. When the ratio of in situ stress is relatively large, the propagation direction of the fracture is affected by the maximum in situ stress, and it is more inclined to propagate along the direction of the maximum in situ stress, forming double wing-type fractures. Hydrofracturing tensile and shear fractures were identified, and the distribution and number of each type were obtained. There are fewer hydraulic shear fractures than tensile fractures, and shear fractures appear in the initial stage of fracture propagation and then propagate and distribute around the perforation.

Originality/value

The proposed dual bilinear CZM is effective for simulating the types of Mode I/II fractures and seizing the fluid-driven propagation of multiscale tensile and shear fractures. Practical fracturing process involves the multi-type and multiscale fluid-driven fracture propagation. This study introduces general fluid-driven fracture propagation, which can be extended to the fracture propagation analysis of potential fluid fracturing, such as other liquids or supercritical gases.

Article
Publication date: 29 May 2023

Bahador Bahrami, Mohammad Reza Mehraban, Seyed Saeid Rahimian Koloor and Majid R. Ayatollahi

The purpose of this study is to develop an efficient numerical procedure for simulating the effect of printing orientation, as one of the primary sources of anisotropy in…

Abstract

Purpose

The purpose of this study is to develop an efficient numerical procedure for simulating the effect of printing orientation, as one of the primary sources of anisotropy in 3D-printed components, on their fracture properties.

Design/methodology/approach

The extended finite element method and the cohesive zone model (XFEM-CZM) are used to develop subroutines for fracture simulation. The ability of two prevalent models, i.e. the continuous-varying fracture properties (CVF) model and the weak plane model (WPM), and a combination of both models (WPM-CVF) are evaluated to capture fracture behavior of the additively manufactured samples. These models are based on the non-local and local forms of the anisotropic maximum tangential stress criterion. The numerical models are assessed by comparing their results with experimental outcomes of 16 different configurations of polycarbonate samples printed using the material extrusion technique.

Findings

The results demonstrate that the CVF exaggerates the level of anisotropy, and the WPM cannot detect the mild anisotropy of 3D-printed parts, while the WPM-CVF produces the best results. Additionally, the non-local scheme outperforms the local approach in terms of finite element analysis performance, such as mesh dependency, robustness, etc.

Originality/value

This paper provides a method for modeling anisotropic fracture in 3D-printed objects. A new damage model based on a combination of two prevalent models is offered. Moreover, the developed subroutines for implementing the non-local anisotropic fracture criterion enable a reliable crack propagation simulation in media with varying degrees of complication, such as anisotropy.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1995

A. Munjiza, D.R.J. Owen and N. Bicanic

This paper discusses the issues involved in the development of combined finite/discrete element methods; both from a fundamental theoretical viewpoint and some related algorithmic…

3033

Abstract

This paper discusses the issues involved in the development of combined finite/discrete element methods; both from a fundamental theoretical viewpoint and some related algorithmic considerations essential for the efficient numerical solution of large scale industrial problems. The finite element representation of the solid region is combined with progressive fracturing, which leads to the formation of discrete elements, which may be composed of one or more deformable finite elements. The applicability of the approach is demonstrated by the solution of a range of examples relevant to various industrial sections.

Details

Engineering Computations, vol. 12 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

3645

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 April 2020

Salim Çam and Adnan Özel

This study aims to investigate the effect of opposing notches formed on the adherends on the tensile strength of an adhesively bonded single-lap joint.

Abstract

Purpose

This study aims to investigate the effect of opposing notches formed on the adherends on the tensile strength of an adhesively bonded single-lap joint.

Design/methodology/approach

Different notch geometries were constructed on adherends and evaluated by using the Taguchi method to obtain optimum notch geometry. Then finite element analysis was conducted considering optimum notch geometries by using the cohesive zone model. Lastly, finite element analysis results were validated experimentally.

Findings

Experimental and numerical studies revealed that notches formed on adherends increased the tensile strength of the joint. The failure load of the Type-III joint, where the highest increase was observed, increased by 15 per cent. In addition, it was found that the notch shape, length, depth and distance to the overlap area had significant effects on the failure load of the joint.

Originality/value

This study shows that higher joint strengths can be accomplished by using the same joint configuration by notching adherends.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1667

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 7 of 7