Search results

1 – 10 of 267
Article
Publication date: 19 September 2019

Jing Xie, Shaoxian Bai and Chunhong Ma

The purpose of this paper is to improve opening performance of bi-directional rotation gas face seals by investigating the hydrodynamic effect of non-closed elliptical grooves.

Abstract

Purpose

The purpose of this paper is to improve opening performance of bi-directional rotation gas face seals by investigating the hydrodynamic effect of non-closed elliptical grooves.

Design/methodology/approach

A model of non-closed elliptical groove bi-directional rotation gas face seal is developed. The distribution of lubricating film pressure is obtained by solving gas Reynolds equations with the finite difference method. The program iterates repeatedly until the convergence criterion on the opening force is satisfied, and the sealing performance is finally obtained.

Findings

Non-closed elliptical groove presents much stronger hydrodynamic effect than the closed groove because of drop of the gas resistance flowing into grooves. Besides, the non-closed elliptical groove presents significant hydrodynamic effect under bi-directional rotation conditions, and an increase of over 40 per cent is obtained for the opening force at seal pressure 4.5 MPa, as same level as the unidirectional spiral groove gas seal. In the case of bi-directional rotation, the value of the inclination angle is recommended to set as 90° presenting a structure symmetry so as to keep best opening performance for both positive and reverse rotation.

Originality/value

A model of non-closed elliptical groove bi-directional rotation gas face seal is established. The hydrodynamic mechanism of this gas seal is illustrated. Parametric investigation of inclination angle and integrity rate is presented for the non-closed elliptical groove bi-directional rotation gas face seal.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 October 2003

105

Abstract

Details

Industrial Lubrication and Tribology, vol. 55 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 1986

THE General Electric Company of the USA Aircraft Engine Business Group's nex flexible machining centre in Lynn, Massachusetts recently produced its first production engine parts…

Abstract

THE General Electric Company of the USA Aircraft Engine Business Group's nex flexible machining centre in Lynn, Massachusetts recently produced its first production engine parts only 16 months after ground breaking.

Details

Aircraft Engineering and Aerospace Technology, vol. 58 no. 4
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 August 2002

Jon Rigelsford

61

Abstract

Details

Industrial Robot: An International Journal, vol. 29 no. 4
Type: Research Article
ISSN: 0143-991X

Content available

Abstract

Details

Industrial Lubrication and Tribology, vol. 56 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 1987

SMALL aluminium alloy parts for the Bae 146 passenger aircraft are now being produced on two new Bridgeport machining centres at the Filton works of British Aerospace near…

Abstract

SMALL aluminium alloy parts for the Bae 146 passenger aircraft are now being produced on two new Bridgeport machining centres at the Filton works of British Aerospace near Bristol. The result is an average three‐fold reduction in floor‐to‐floor time compared with previous manual machining; and in some cases production is up to 12 times faster.

Details

Aircraft Engineering and Aerospace Technology, vol. 59 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1985

SMALL aluminium alloy parts for the BAe 146 passenger aircraft are now being produced on two new Bridgeport machining centres at the Filton works of British Aerospace near…

Abstract

SMALL aluminium alloy parts for the BAe 146 passenger aircraft are now being produced on two new Bridgeport machining centres at the Filton works of British Aerospace near Bristol. The result is said to be an average three‐fold reduction in floor‐to‐floor time compared with previous manual machining; and in some cases production is up to 12 times faster.

Details

Aircraft Engineering and Aerospace Technology, vol. 57 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 27 March 2023

Huanjun Li and Yimin Zhang

There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the…

Abstract

Purpose

There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the relationship between the flow inside the impeller and the vibration of the blade; study the influence of material properties on flow field and vibration of centrifugal blades.

Design/methodology/approach

First, a bi-directional fluid-structure coupling finite element numerical model of the supersonic semi-open centrifugal impeller is established based on the Workbench platform. Then, the calculation results of impeller polytropic efficiency and stage total pressure ratio are compared with the experimental results from the available literature. Finally, the flow field and vibrational characteristics of 17-4PH (PHB), aluminum alloy (AAL) and carbon fiber-reinforced plastic (CFP) blades are compared under different operating conditions.

Findings

The results show that the flow fields performance and blade vibration influence each other. The flow fields performance and vibration resistance of CFP blades are higher than those of 17-4PH (PHB) and aluminum alloy (AAL) blades. At the design speed, compared with the PHB blades and AAL blades, the CFP blades deformation is reduced by 34.5% and 9%, the stress is reduced by 69.6% and 20% and the impeller pressure ratio is increased by 0.8% and 0.14%, respectively.

Originality/value

The importance of fluid-structure interaction to the aerodynamic and structural design of centrifugal impeller is revealed, and the superiority over composite materials in the application of centrifugal impeller is verified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 September 2020

Delei Zhu and Shaoxian Bai

The purpose of this study is to determine the sealing performance of face seals by numerical analysis of thermoelastohydrodynamic characteristics of supercritical CO2 (S-CO2

Abstract

Purpose

The purpose of this study is to determine the sealing performance of face seals by numerical analysis of thermoelastohydrodynamic characteristics of supercritical CO2 (S-CO2) spiral groove face seals in the supercritical regime.

Design/methodology/approach

The spiral groove face seal was used as the research object. The distribution of lubricating film pressure and temperature was analysed by solving the gas state, Reynolds and energy equations using the finite difference method. Furthermore, the influence law of sealing performance was obtained.

Findings

Close to the critical temperature of S-CO2, face distortions produced by increasing pressure lead to divergent clearance and resulted in reduced opening force. In the state of S-CO2, the face distortions generated by increasing seal temperature lead to convergent clearance, which enhances the opening force. In addition, near the critical temperature of S-CO2, the opening force may be reduced by 10%, and the leakage rate of the seal sharply increases by a factor of four.

Originality/value

The thermoelastohydrodynamic characteristics of supercritical CO2 face seals are illustrated considering the actual gas effect including compressibility, heat capacity and viscosity. Face distortions and sealing performance were calculated under different seal pressures and seal temperatures in the supercritical regime, as well as with N2 for comparison.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0169/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 January 2011

Shiqi Li, Yang Liu and Ming Xie

The purpose of this paper is to present the design and implementation of a new manipulator with six joints driven by a single DC motor.

Abstract

Purpose

The purpose of this paper is to present the design and implementation of a new manipulator with six joints driven by a single DC motor.

Design/methodology/approach

The manipulator consists of several modules, each of which has the twisting and pivoting degrees of freedom. Two clutches and one brake are mounted to control each joint. A clutch model based on PWM control is built to compute the average velocity of each clutch. Two parameters are involved in the model: PWM frequency and duty ratio. PWM frequency is limited by the natural frequencies of structure with all postures. The theoretical duty ratio should be adjusted according to the clutch model. Two experiments – line tracking and arc tracking – are carried out to verify the effectiveness of the control system.

Findings

The study has designed a manipulator with six joints driven by a single DC motor which powers all the modules through a main shaft and several clutches. In the manipulator, all the modules are supplied with a constant speed input and provide a bi‐directional variable output. Experimental results show the clutch model built for the manipulator can be applied to the joint control of all multi‐joint manipulators.

Originality/value

The paper describes a dexterous and light‐weight manipulator driven by a single motor and designed with bi‐directional joints.

Details

Industrial Robot: An International Journal, vol. 38 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 267