Search results

1 – 10 of 268
Article
Publication date: 11 July 2022

Xiaomin Zhao, Fuminobu Ozaki, Takeo Hirashima, Kei Kimura, Yukio Murakami, Jun-ichi Suzuki and Naoya Yotsumoto

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local…

Abstract

Purpose

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local buckling at elevated temperatures.

Design/methodology/approach

Steady-state tests using various test parameters, including width-thickness ratios (Class 2–4) and specimen temperatures (ambient temperature, 400, 500, 600, 700, and 800°C), were performed on 18 steel beam specimens using roller supports to examine the maximum bending moment and bending strength after local buckling. A detailed calculation model (DCM) based on the equilibrium of the axial force in the cross-section and a simple calculation model (SCM) for a practical fire-resistant design were proposed. The validity of the calculation models was verified using the bending test results.

Findings

The strain concentration at the local buckling cross-section was mitigated in the elevated-temperature region, resulting in a small bending moment degradation after local buckling. The theoretical bending strengths after local buckling, evaluated from the calculation models, were in good agreement with the test results at elevated temperatures.

Originality/value

The effect of local buckling on the bending behaviour after the maximum bending strength in high-temperature regions was quantified. Two types of calculation models were proposed to evaluate the theoretical bending strength after local buckling.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 May 2023

Kei Kimura, Takeshi Onogi, Naoya Yotsumoto and Fuminobu Ozaki

In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating…

49

Abstract

Purpose

In this study, the effects of strain rate on the bending strength of full-scale wide-flange steel beams have been examined at elevated temperatures. Both full-scale loaded heating tests under steady-state conditions and in-plane numerical analysis using a beam element have been employed.

Design/methodology/approach

The load–deformation relationships in 385 N/mm2-class steel beam specimens was examined using steady-state tests at two loading rate values (0.05 and 1.00 kN/s) and at two constant member temperatures (600 and 700 °C). Furthermore, the stress–strain relationships considering the strain rate effects were proposed based on tensile coupon test results under various strain rate values. The in-plane elastoplastic numerical analysis was conducted considering the strain rate effect.

Findings

The experimental test results of the full-scale steel beam specimens confirmed that the bending strength increased with increase in strain rate. In addition, the analytical results agreed relatively well with the test results, and both strain and strain rate behaviours of a heated steel member, which were difficult to evaluate from the test results, could be quantified numerically.

Originality/value

The novelty of this study is the quantification of the strain rate effect on the bending strength of steel beams at elevated temperatures. The results clarify that the load–deformation relationship of steel beams could be evaluated by using in-plane analysis using the tensile coupon test results. The numerical simulation method can increase the accuracy of evaluation of the actual behaviour of steel members in case of fire.

Article
Publication date: 14 December 2021

Fuminobu Ozaki and Takumi Umemura

In this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and…

Abstract

Purpose

In this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and transient state tests with various heating and deformation rates.

Design/methodology/approach

The engineering stress and strain relationships for Japan industrial standard (JIS) SN400 B mild steels at elevated temperatures were obtained by coupon tests under three strain rates. A bending test using a simple supported small beam specimen was conducted to examine the effects of the deformation rates on the centre deflection under steady-state conditions and the heating rates under transient state conditions. Flexural buckling tests using the same cross-section specimen as that used in the bending test were conducted under steady-state and transient-state conditions.

Findings

It was clarified that the bending strength and collapse temperature are evaluated by the full plastic moment using the effective strength when the strain is equal to 0.01 or 0.02 under fast strain rates (0.03 and 0.07 min–1). In contrast, the flexural buckling strength and collapse temperature are approximately evaluated by the buckling strength using the 0.002 offset yield strength under a slow strain rate (0.003 min–1).

Originality/value

Regarding both bending and flexural buckling strengths and collapse temperatures of steel members subjected to fire, the relationships among effects of steel strain rate for coupon test results, heating and deformation rates for the heated steel members were minutely investigated by the steady and transient-state tests at elevated temperatures.

Article
Publication date: 8 April 2022

Fuminobu Ozaki and Takumi Umemura

In this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical…

Abstract

Purpose

In this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical model using a two-dimensional beam element to analytically examine the effect of strain rate on the load-bearing capacity and collapse temperature was proposed.

Design/methodology/approach

The stress-strain relationships taking into account temperature, strain, and strain rate were established based on the past coupon test results with strain rate as the test parameter. Furthermore, an elasto-plastic analysis using a two-dimensional beam element, which considered the effect on strain rate, was conducted for both transient- and steady-state conditions.

Findings

The analytical results agreed relatively well with the test results, which used small steel beam specimens with a rectangular cross-section under various heating rates (transient-state condition) and deformation rates (steady-state condition). It was found that the bending strength and collapse temperature obtained from the parametric analyses agreed relatively well with those evaluated using the effective strength obtained from the coupon tests with strain equal to 0.01 or 0.02 under the fast strain rates.

Originality/value

The effect of stress degradation, including the stress-strain relationships at elevated temperature, was mitigated by considering the effect of strain rate on the analytical model. This is an important point to consider when considering the effect of strain rate on steel structural analysis at elevated temperatures to maintain analytical stability unaccompanied by the stress degradation.

Article
Publication date: 12 December 2016

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated…

Abstract

Purpose

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated to these members are not completely understood in fire situation. Thus, the purpose of this study is to analyse the behaviour of beams composed of cold-formed lipped channel sections at elevated temperatures.

Design/methodology/approach

A numerical analysis is made, applying the finite element program SAFIR, on the behaviour of simply supported cold formed steel beams at elevated temperatures. A parametric study, considering several cross-sections with different slenderness’s values, steel grades and bending diagrams, is presented. The obtained numerical results are compared with the design bending resistances determined from Eurocode 3 Part 1-2 and its French National Annex (FN Annex).

Findings

The current design expressions revealed to be too conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the Annex E, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are tested. This new methodology, which introduces minimum changes in the existing formulae, provides safety and accuracy at the same time when compared to the numerical results, considering the occurrence of local, distortional and lateral torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 November 2021

Flávio Alexandre Matias Arrais, Nuno Lopes and Paulo Vila Real

Stainless steel has different advantages when compared to conventional carbon steel. The corrosion resistance and aesthetic appearance are the most known; however, its better…

Abstract

Purpose

Stainless steel has different advantages when compared to conventional carbon steel. The corrosion resistance and aesthetic appearance are the most known; however, its better behaviour under elevated temperatures can also be important in buildings design. In spite of the initial cost, stainless-steel application as a structural material has been increasing. Elliptical hollow sections integrate the architectural attributes of the circular hollow sections and the structural advantages of the rectangular hollow sections (RHSs). Hence, the application of stainless-steel material combined with elliptical hollow profiles stands as an interesting design option. The purpose of the paper is to better understand the resistance of stainless-steel-beam columns in case of fire

Design/methodology/approach

The research presents a numerical study on the behaviour of stainless-steel members with slender elliptical hollow section (EHS) subjected to axial compression and bending about the strong axis at elevated temperatures. A parametric numerical study is presented here considering with and without out-of-plane buckling different stainless-steel grades, cross-section and member slenderness, bending moment diagrams and elevated temperatures.

Findings

The tested design methodologies proved to be inadequate for the EHS members being in some situations too conservative.

Originality/value

The safety and accuracy of Eurocode 3 (EC3) design methodology and of a recent design proposal developed for I-sections and cold-formed RHSs are analysed applying material and geometric non-linear analysis considering imperfections with the finite element software SAFIR.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 March 2018

Osama (Sam) Salem

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and…

Abstract

Purpose

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and span length. The purpose of this study is to investigate the structural fire behaviour of axially restrained steel beams under different beam’s load ratios, taking into consideration the effect of the beam’s end connections configuration.

Design/methodology/approach

A three-dimensional finite element (FE) computer model has been developed to simulate the structural fire behaviour of axially restrained steel beams and their end connections. After successfully validating the developed model against the outcomes of the available large-size fire resistance experiments, the FE model has been used in a parametric study to investigate the beam’s load ratio effect on the behaviour of the axially restrained steel beams and their end connections.

Findings

The parametric study showed that increasing the beam loading level significantly increased the beam deflections at elevated temperatures; where, increasing the beam’s load ratio from 0.5 to 0.9 reduced the beam fire resistance by about 100 s. In contrast, decreasing the beam’s load ratio from 0.5 to 0.3 allowed the beam to easily achieve a 30-min fire resistance rating with no fire protection applied.

Originality/value

Experimental parametric studies are difficult to control in a laboratory setting and are also expensive and time consuming. Therefore, the reasonable accuracy of the validated FE model in reproducing the experimental fire behaviour of steel beams and their end connections makes it a very useful tool for both numerical and analytical studies.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 June 2021

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Sigma cross-section profiles are often chosen for their lightness and ability to support large spans, offering a favourable bending resistance. However, they are more susceptible…

Abstract

Purpose

Sigma cross-section profiles are often chosen for their lightness and ability to support large spans, offering a favourable bending resistance. However, they are more susceptible to local, distortional and lateral-torsional buckling, as possible failure modes when compared to common I-sections and hollow cross-sections. However, the instability phenomena associated to these members are not completely understood in fire situation. Therefore, the purpose of this study is to analyse the behaviour of beams composed of cold-formed sigma sections at elevated temperatures.

Design/methodology/approach

This study presents a numerical analysis, using advanced methods by applying the finite element software SAFIR. A numerical analysis of the behaviour of simply supported cold-formed sigma beams in the case of fire is presented considering different cross-section slenderness values, elevated temperatures, steel grades and bending moment diagrams. Comparisons are made between the obtained numerically ultimate bending capacities and the design bending resistances from Eurocode 3 Part 1–2 rules and its respective French National Annex (FN Annex).

Findings

The current design expressions revealed to be over conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the general prescriptions, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are analysed. This new methodology, which introduces minimum changes in the existing formulae, provides at the same time safety and accuracy when compared to the numerical results, considering the occurrence of local, distortional and lateral-torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 July 2019

Ahmed Allam, Ayman Nassif and Ali Nadjai

This paper aims to investigate computationally and analytically how different levels of restraint from surrounding structure, via catenary action in beams, affect the survival of

Abstract

Purpose

This paper aims to investigate computationally and analytically how different levels of restraint from surrounding structure, via catenary action in beams, affect the survival of steel framed structures in fire. This study focuses on examining the mid-span deflection and the tensile axial force of a non-composite heated steel beam at large deflection that is induced by the catenary action during exposure to fires. The study also considers the effect of the axial horizontal restraints, load-ratio, beam temperature gradient and the span/depth ratio. It was found that these factors influence the heated steel beam within steel construction and its catenary action at large deflection. The study suggests that this may help the beam to hang to the surrounding cold structure and delay the run-away deflection when the tensile axial force of the beam has been overcome.

Design/methodology/approach

This paper is part one of the parametric study and discusses both the effect of the axial horizontal restraints and load-ratio on the heated steel-beam. Reliance on the prescriptive standard fire solutions may lead to an unpredicted behaviour of the structure members if the impact of potential real fires is not considered.

Findings

Variation of the horizontal end-restraint level has a major effect on the behaviour of the beam at high deflection, and the loading on a beam at large displacement can be carried effectively by catenary behaviour. An increase of axial horizontal stiffness helps the catenary action to prevent run-away at lower deflections. The studies also investigated the influence of varying the load ratio on the behaviour of the heated beam at large deflection and how it affects the efficacy of the catenary action. The study suggests that care should be taken when selecting the load ratio to be used in the design.

Originality/value

In a recent work, the large deflection behaviours of axially restrained corrugated web steel beam (CWSB) at elevated temperatures were investigated using a finite element method (Wang et al., 2014). Parameters that greatly affected behaviours of CWSB at elevated temperatures were the load ratio, the axial restraint stiffness ratio and the span–depth ratio. Other works included numerical studies on large deflection behaviours of restrained castellated steel beams in a fire where the impact of the catenary action is considered (Wang, 2002). The impact of the induced axial forces in the steel beam during cooling stage of a fire when the beam temperature decreases, if thermal shortening of the beam is restrained, large tensile forces may be induced in the beam (Wang, 2005; Allam et al., 2002). A performance-based approach is developed for assessing the fire resistance of restrained beams. The approach is based on equilibrium and compatibility principles, takes into consideration the influence of many factors, including fire scenario, end restraints, thermal gradient, load level and failure criteria, in evaluating fire resistance (Dwaikat and Kodur, 2011; Allam et al., 1998).

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 December 2021

Sachin Vijaya Kumar and N. Suresh

The Reinforced Concrete(RC) elements are known to perform well during exposure to elevated temperatures. Hence, RC elements are widely used to resist the extreme heat developing…

Abstract

Purpose

The Reinforced Concrete(RC) elements are known to perform well during exposure to elevated temperatures. Hence, RC elements are widely used to resist the extreme heat developing from accidental fires and other industrial processes. In both of the scenarios, the RC element is exposed to elevated temperatures. However, the primary differences between the fire and processed temperatures are the rate of temperature increase, mode of exposure and exposure durations. In order to determine the effect of two heating modalities, RC beams were exposed to processed temperatures with slow heating rates and fire with fast heating rates.

Design/methodology/approach

In the present study, RC beam specimens were exposed to 200 °C, to 800 °C temperature at 200 °C intervals for 2 h' duration by adopting two heating modes; Fire and processed temperatures. An electrical furnace with low-temperature increment and a fire furnace with standard time-temperature increment is adapted to expose the RC elements to elevated temperatures.

Findings

It is observed from test results that, the reduction in load-carrying capacity, first crack load, and thermal crack widths of RC beams exposed to 200 °C, and 600 °C temperature at fire is significantly high from the RC beams exposed to the processed temperature having the same maximum temperature. As the exposure temperature increases to 800 °C, the performance of RC beams at all heating modes becomes approximately equal.

Originality/value

In this work, residual performance, and failure modes of RC beams exposed to elevated temperatures were achieved through two different heating modes are presented.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 268