Search results

1 – 10 of 266
Article
Publication date: 7 September 2023

Nor Salwani Hashim, Fatimah De’nan and Nurfarhah Naaim

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural…

Abstract

Purpose

Nowadays, residential buildings have become increasingly important due to the growing communities. The purpose of this study is to investigate the behavior of a steel structural framing system that incorporates lightweight load-bearing walls and slabs, and to compare the weight of materials used in cold-formed and hot-finished steel structural systems for affordable housing.

Design/methodology/approach

Four types of models consisting of 243 members were simulated. Model 1 is a cold-formed steel structural framing system, while Model 2 is a hot-finished steel structural framing system. Both Models 1 and 2 use lightweight wall panels and lightweight composite slabs. Models 3 and 4 are made with brick walls and precast reinforced concrete systems, respectively. These structures use different wall and slab materials, namely, brick walls and precast reinforced concrete. The analysis includes bending behavior, buckling resistance, shear resistance and torsional rotation analysis.

Findings

This study found that using thinner steel sections can increase the deflection value. Meanwhile, increasing member length and the ratio of slenderness will decrease buckling resistance. As the applied load increases, buckling deformation also increases. Furthermore, decreasing shear area causes a reduction in shear resistance. Thicker sections and the use of lightweight materials can decrease the torsional rotation value.

Originality/value

The weight comparison of the steel structures shows that Model 1, which is a cold-formed steel structure with lightweight wall panels and lightweight composite slabs, is the most suitable model due to its lightweight and affordability for housing. This model can also be used as a reference for the optimal design of modular structural framing using cold-formed steel materials in the field of civil engineering and as a promotional tool.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 July 2023

Li Fan and Biao Nie

This paper aims to investigate the evolution law of surface characteristic of corroded cold-formed thin-walled steel in industrial environments.

Abstract

Purpose

This paper aims to investigate the evolution law of surface characteristic of corroded cold-formed thin-walled steel in industrial environments.

Design/methodology/approach

Five test specimens sourced from cold-formed thin-walled C-shaped steel that have been in service for three years in actual industrial environments were subjected to surface characteristic test. The surface characteristic of corroded hot-rolled steel and cold-formed steel were compared and analyzed. The relationship between the surface morphology parameters and the average corrosion depth was established.

Findings

The evolution law of the surface morphology of corroded cold-formed thin-walled steel and corroded hot-rolled steel was similar. The frequency histogram of corrosion depth was mainly single peak with high values on the middle and low values on both sides. The corrosion depth conformed to the normal distribution. The roughness average height and the root mean square of surface height gradually increased linearly with increasing the average corrosion depth.

Originality/value

The reduction in the standard deviation of corrosion depth, the maximum corrosion depth, the roughness average height and the root mean square of surface height of the cold-formed thin-walled steel was smaller than those of the hot-rolled steel.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 January 2023

Ying Ling Jin, Fatimah De’nan, Kok Keong Choong and Nor Salwani Hashim

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports…

Abstract

Purpose

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports the weight of the roof deck and aids to make the entire roof structure more rigid. Furthermore, cold-formed steel purlin is a replacement for wood purlin because steel purlins are light weight and more economical. Hence, the purpose of this study to investigate the effect of opening due to torsion behaviour.

Design/methodology/approach

This analysis used cold-formed steel hat purlin with and without openings (WOs) under different opening shape, location and spacing by using finite element LUSAS software.

Findings

The finite element results showed that purlin with openings had higher angle of rotation than section WO, with a percentage difference of not more than 6%. When the opening was located at mid-span, the angle of rotation reduced. Angle of rotation increased when the opening spacing increased. Number of openings also affected the torsional behaviour of the purlin. Five opening shapes, which were circle, diamond, C-hexagon, square and elongated circle, were studied. Among all the shapes, purlin with diamond opening was more resistance to torsion.

Originality/value

The use of cold-formed steel section with web openings (rectangular or circular) is a practical solution when it is required to pass service ducts through the structural member. However, the presence of opening gives minor effect on the structural behaviour of cold-formed steel hat purlin.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2019

Mohammad Zaman Kabir and Mehdi Parvizi

The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled…

Abstract

Purpose

The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled cold-formed steel channel and built-up I-sections beams. Built-up I section is made up of two back-to-back cold-formed channel beams. In this direction, at the primary stage, the roll-forming process of a channel section was simulated in ABAQUS environment and the accuracy of the result was verified with those existing experiments. Residual stresses and strains in both longitudinal and circumferential transverse directions were extracted and considered in the lateral-torsional buckling analysis under uniform end moments. The contribution of the current research is devoted to the numerical simulation of the rolling process in ABAQUS software enabling to restore the remaining stresses and strains for the buckling analysis in the identical software. The results showed that the residual stresses decrease considerably the lateral-torsional buckling strength as they have a major impact on short-span beams for channel sections and larger span for built-up I sections. The obtained moment capacity from the buckling analysis was compared to the predictions by American Iron and Steel Institute design code and it is found to be conservative.

Design/methodology/approach

This paper has explained a numerical study on the roll-forming process of a channel section and member moment capacities related to the lateral-torsional buckling of the rolled form channel and built-up I-sections beams under uniform bending about its major axis. It has also investigated the effects of residual stresses and strains on the behaviour of this buckling mode.

Findings

The residuals decrease the moment capacities of the channel beams and have major effect on shorter spans and also increase the local buckling strength of compression flange. But the residuals have major effect on larger spans for built-up I sections. It could be seen that the ratio of moment (with residuals and without residuals) for singly symmetric sections is more pronounced than doubly symmetric sections. So it is recommended to use doubly symmetric section of cold-formed section beams.

Originality/value

The incorporation of residual stresses and strains in the process of numerical simulation of rolled forming of cold-formed steel sections under end moments is the main contribution of the current work. The effect of residual stresses and strains on the lateral-torsional buckling is, for the first time, addressed in the paper.

Details

International Journal of Structural Integrity, vol. 10 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 December 2016

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated…

Abstract

Purpose

Steel beams composed of cold-formed sections are common in buildings because of their lightness and ability to support large spans. However, the instability phenomena associated to these members are not completely understood in fire situation. Thus, the purpose of this study is to analyse the behaviour of beams composed of cold-formed lipped channel sections at elevated temperatures.

Design/methodology/approach

A numerical analysis is made, applying the finite element program SAFIR, on the behaviour of simply supported cold formed steel beams at elevated temperatures. A parametric study, considering several cross-sections with different slenderness’s values, steel grades and bending diagrams, is presented. The obtained numerical results are compared with the design bending resistances determined from Eurocode 3 Part 1-2 and its French National Annex (FN Annex).

Findings

The current design expressions revealed to be too conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the Annex E, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are tested. This new methodology, which introduces minimum changes in the existing formulae, provides safety and accuracy at the same time when compared to the numerical results, considering the occurrence of local, distortional and lateral torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 7 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 June 2021

Flávio Arrais, Nuno Lopes and Paulo Vila Real

Sigma cross-section profiles are often chosen for their lightness and ability to support large spans, offering a favourable bending resistance. However, they are more susceptible…

Abstract

Purpose

Sigma cross-section profiles are often chosen for their lightness and ability to support large spans, offering a favourable bending resistance. However, they are more susceptible to local, distortional and lateral-torsional buckling, as possible failure modes when compared to common I-sections and hollow cross-sections. However, the instability phenomena associated to these members are not completely understood in fire situation. Therefore, the purpose of this study is to analyse the behaviour of beams composed of cold-formed sigma sections at elevated temperatures.

Design/methodology/approach

This study presents a numerical analysis, using advanced methods by applying the finite element software SAFIR. A numerical analysis of the behaviour of simply supported cold-formed sigma beams in the case of fire is presented considering different cross-section slenderness values, elevated temperatures, steel grades and bending moment diagrams. Comparisons are made between the obtained numerically ultimate bending capacities and the design bending resistances from Eurocode 3 Part 1–2 rules and its respective French National Annex (FN Annex).

Findings

The current design expressions revealed to be over conservative when compared with the obtained numerical results. It was possible to observe that the FN Annex is less conservative than the general prescriptions, the first having a better agreement with the numerical results.

Originality/value

Following the previous comparisons, new fire design formulae are analysed. This new methodology, which introduces minimum changes in the existing formulae, provides at the same time safety and accuracy when compared to the numerical results, considering the occurrence of local, distortional and lateral-torsional buckling phenomena in these members at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 December 2020

Fatimah De'nan, Nor Salwani Hashim and Zafira Nur Ezzati Mustafa

The purpose of this study is to know the buckling capacity for cold-formed C-column with perforation. Cold-formed C-column have been used in interior wall construction. The…

Abstract

Purpose

The purpose of this study is to know the buckling capacity for cold-formed C-column with perforation. Cold-formed C-column have been used in interior wall construction. The concept of web perforation in the column has been introduced to the construction sector to overcome the issue of material cost.

Design/methodology/approach

Initially, the determination of the suitable spacing for the space column for the affordable house is investigated. Analysis house frame has been done in STAAD Pro. (Staad Pro, 2003) software using cold-formed C-column without perforation. Perforation with circular shape has been used in this study with the size of 0.4, 0.6 and 0.8 D (D = 180 mm). Perforation spacing is 150, 250 and 350 mm are adopted.

Findings

For the specimen with 0.4 D perforation and the edge distance is 539 mm have the highest buckling capacity (26.59 kN). Reduction of buckling capacity is 5.31% from cold-formed C-column without perforation and reduction of the volume is −2.16%. For the same case with 0.8 D perforation, the buckling capacity reduces with 22.52% and volume is −6.85%.

Originality/value

The conclusion of this analysis, C-column without perforation have higher buckling capacity compare to C-column with perforations.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 August 2022

Kok Keong Choong, Fatimah De’nan, Seen Hooi Chew and Nor Salwani Hashim

Recently, the utilization of cold-formed steel (CFS) roof truss systems and different types of other combination structural support systems, such as concrete or hot-rolled steel…

Abstract

Purpose

Recently, the utilization of cold-formed steel (CFS) roof truss systems and different types of other combination structural support systems, such as concrete or hot-rolled steel support, becomes more frequently used. This paper aims to identify the load transfer characteristics of three different design details for cold-formed truss to supporting system connections and to propose simplified modelling approach for practices.

Design/methodology/approach

Simplification modelling of connection design could be proposed for practical purpose based on the load transfer characteristics obtained from detailed study using finite element method. A cold-formed roof truss system with connection is modelled using line elements. However, the supporting system is not modelled in this work. Three types of connection involve, which are five pieces of CFS L-angle brackets, one-piece of CFS L-angle brackets and three types of bolts connection are modelled.

Findings

The results of analysis show that the connections located on the loaded side experienced higher reactions than those far from loaded side. From the result, it is also found that the option of “Fixed But” support condition in STAAD.Pro with translational degree of freedom being restrained is the most suitable way to represent the CFS L-angle brackets design for Type 1 connection for use in truss modelled using line elements.

Originality/value

Such increase in usage necessitates an appropriate connection detailing depending on the behaviour of the connection.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 June 2015

Ross P. D. Johnston, Mohammed Sonebi, James B. P. Lim, Cecil G. Armstrong, Andrzej M. Wrzesien, Gasser Abdelal and Ying Hu

This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal…

Abstract

This paper describes the results of non-linear elasto-plastic implicit dynamic finite element analyses that are used to predict the collapse behaviour of cold-formed steel portal frames at elevated temperatures. The collapse behaviour of a simple rigid-jointed beam idealisation and a more accurate semi-rigid jointed shell element idealisation are compared for two different fire scenarios. For the case of the shell element idealisation, the semi-rigidity of the cold-formed steel joints is explicitly taken into account through modelling of the bolt-hole elongation stiffness. In addition, the shell element idealisation is able to capture buckling of the cold-formed steel sections in the vicinity of the joints. The shell element idealisation is validated at ambient temperature against the results of full-scale tests reported in the literature. The behaviour at elevated temperatures is then considered for both the semi-rigid jointed shell and rigid-jointed beam idealisations. The inclusion of accurate joint rigidity and geometric non-linearity (second order analysis) are shown to affect the collapse behaviour at elevated temperatures. For each fire scenario considered, the importance of base fixity in preventing an undesirable outwards collapse mechanism is demonstrated. The results demonstrate that joint rigidity and varying fire scenarios should be considered in order to allow for conservative design.

Details

Journal of Structural Fire Engineering, vol. 6 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 October 2017

Hélder Craveiro, João Paulo Correia Rodrigues and Luis Laim

The use of cold-formed steel members has increased significantly in the past few years; however, its design is only briefly addressed in the current design codes, such as the EN…

Abstract

Purpose

The use of cold-formed steel members has increased significantly in the past few years; however, its design is only briefly addressed in the current design codes, such as the EN 1993-1-3. To evaluate the compressive behavior of single and built-up cold-formed steel members, at ambient and simulated fire conditions with restrained thermal elongation, experimental and numerical tests were undertaken.

Design/methodology/approach

Four cross-section shapes were tested, namely, one single (lipped channel), one open built-up (I) and two closed built-up (R and 2R), considering two end support conditions, pinned and fixed. Two test set-ups were specifically developed for these tests. Based on the experimental results finite element models were developed and calibrated to allow future parametric studies.

Findings

This paper showed that increasing the level of restraint to thermal elongation and the initially applied load led to lower critical temperatures. Increasing the level of restraint to thermal elongation, the failure is governed by the generated axial restraining forces, whereas for lower levels of restraint to thermal elongation, the failure is controlled by the temperature increasing.

Originality/value

This paper is a contribution to the knowledge on the behavior of cold-formed steel columns subjected to fire, especially on the ones with a built-up cross-section, where results on thermal restrained ones are still scarce. It presented a set of experimental and numerical results useful for the development of numerical and analytical analysis concerning the development of new simplified calculation methods.

Details

Journal of Structural Fire Engineering, vol. 9 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 266