Search results

1 – 10 of 180
Article
Publication date: 20 May 2024

Xiao Yang and Xinbo Qian

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful…

Abstract

Purpose

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful life, the authors propose a method incorporating competitive failure and Monte Carlo simulation. This method allows for more accurate prediction of hydraulic slide valve remaining useful life.

Design/methodology/approach

In this paper, the competitive failure mode of the hydraulic slide valve is analyzed by studying the two failure modes of the hydraulic slide valve, and the prediction of the remaining useful life of the hydraulic slide valve is studied by using the sample set generated by Monte Carlo simulation and the competitive failure joint model.

Findings

The results show that the proposed prediction method based on competitive failure and Monte Carlo simulation is more accurate than the traditional Bayesian joint model prediction method when dealing with the failure mode competition phenomenon of hydraulic slide valve.

Originality/value

In this paper, the remaining useful life prediction of hydraulic slide valve with competitive failure characteristics is studied, which provides a new idea for the remaining useful life prediction method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0361/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 5 April 2024

Zhichao Wang and Valentin Zelenyuk

Estimation of (in)efficiency became a popular practice that witnessed applications in virtually any sector of the economy over the last few decades. Many different models were…

Abstract

Estimation of (in)efficiency became a popular practice that witnessed applications in virtually any sector of the economy over the last few decades. Many different models were deployed for such endeavors, with Stochastic Frontier Analysis (SFA) models dominating the econometric literature. Among the most popular variants of SFA are Aigner, Lovell, and Schmidt (1977), which launched the literature, and Kumbhakar, Ghosh, and McGuckin (1991), which pioneered the branch taking account of the (in)efficiency term via the so-called environmental variables or determinants of inefficiency. Focusing on these two prominent approaches in SFA, the goal of this chapter is to try to understand the production inefficiency of public hospitals in Queensland. While doing so, a recognized yet often overlooked phenomenon emerges where possible dramatic differences (and consequently very different policy implications) can be derived from different models, even within one paradigm of SFA models. This emphasizes the importance of exploring many alternative models, and scrutinizing their assumptions, before drawing policy implications, especially when such implications may substantially affect people’s lives, as is the case in the hospital sector.

Article
Publication date: 16 August 2023

Jialiang Xie, Shanli Zhang, Honghui Wang and Mingzhi Chen

With the rapid development of Internet technology, cybersecurity threats such as security loopholes, data leaks, network fraud, and ransomware have become increasingly prominent…

Abstract

Purpose

With the rapid development of Internet technology, cybersecurity threats such as security loopholes, data leaks, network fraud, and ransomware have become increasingly prominent, and organized and purposeful cyberattacks have increased, posing more challenges to cybersecurity protection. Therefore, reliable network risk assessment methods and effective network security protection schemes are urgently needed.

Design/methodology/approach

Based on the dynamic behavior patterns of attackers and defenders, a Bayesian network attack graph is constructed, and a multitarget risk dynamic assessment model is proposed based on network availability, network utilization impact and vulnerability attack possibility. Then, the self-organizing multiobjective evolutionary algorithm based on grey wolf optimization is proposed. And the authors use this algorithm to solve the multiobjective risk assessment model, and a variety of different attack strategies are obtained.

Findings

The experimental results demonstrate that the method yields 29 distinct attack strategies, and then attacker's preferences can be obtained according to these attack strategies. Furthermore, the method efficiently addresses the security assessment problem involving multiple decision variables, thereby providing constructive guidance for the construction of security network, security reinforcement and active defense.

Originality/value

A method for network risk assessment methods is given. And this study proposed a multiobjective risk dynamic assessment model based on network availability, network utilization impact and the possibility of vulnerability attacks. The example demonstrates the effectiveness of the method in addressing network security risks.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 November 2023

Ahmad Ebrahimi and Sara Mojtahedi

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information…

Abstract

Purpose

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information and details about particular parts (components) repair and replacement during the warranty term, usually stored in the after-sales service database, can be used to solve problems in a variety of sectors. Due to the small number of studies related to the complete analysis of parts failure patterns in the automotive industry in the literature, this paper focuses on discovering and assessing the impact of lesser-studied factors on the failure of auto parts in the warranty period from the after-sales data of an automotive manufacturer.

Design/methodology/approach

The interconnected method used in this study for analyzing failure patterns is formed by combining association rules (AR) mining and Bayesian networks (BNs).

Findings

This research utilized AR analysis to extract valuable information from warranty data, exploring the relationship between component failure, time and location. Additionally, BNs were employed to investigate other potential factors influencing component failure, which could not be identified using Association Rules alone. This approach provided a more comprehensive evaluation of the data and valuable insights for decision-making in relevant industries.

Originality/value

This study's findings are believed to be practical in achieving a better dissection and providing a comprehensive package that can be utilized to increase component quality and overcome cross-sectional solutions. The integration of these methods allowed for a wider exploration of potential factors influencing component failure, enhancing the validity and depth of the research findings.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 12 April 2024

Tongzheng Pu, Chongxing Huang, Haimo Zhang, Jingjing Yang and Ming Huang

Forecasting population movement trends is crucial for implementing effective policies to regulate labor force growth and understand demographic changes. Combining migration theory…

Abstract

Purpose

Forecasting population movement trends is crucial for implementing effective policies to regulate labor force growth and understand demographic changes. Combining migration theory expertise and neural network technology can bring a fresh perspective to international migration forecasting research.

Design/methodology/approach

This study proposes a conditional generative adversarial neural network model incorporating the migration knowledge – conditional generative adversarial network (MK-CGAN). By using the migration knowledge to design the parameters, MK-CGAN can effectively address the limited data problem, thereby enhancing the accuracy of migration forecasts.

Findings

The model was tested by forecasting migration flows between different countries and had good generalizability and validity. The results are robust as the proposed solutions can achieve lesser mean absolute error, mean squared error, root mean square error, mean absolute percentage error and R2 values, reaching 0.9855 compared to long short-term memory (LSTM), gated recurrent unit, generative adversarial network (GAN) and the traditional gravity model.

Originality/value

This study is significant because it demonstrates a highly effective technique for predicting international migration using conditional GANs. By incorporating migration knowledge into our models, we can achieve prediction accuracy, gaining valuable insights into the differences between various model characteristics. We used SHapley Additive exPlanations to enhance our understanding of these differences and provide clear and concise explanations for our model predictions. The results demonstrated the theoretical significance and practical value of the MK-CGAN model in predicting international migration.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 19 February 2024

Alireza Khalili-Fard, Reza Tavakkoli-Moghaddam, Nasser Abdali, Mohammad Alipour-Vaezi and Ali Bozorgi-Amiri

In recent decades, the student population in dormitories has increased notably, primarily attributed to the growing number of international students. Dormitories serve as pivotal…

Abstract

Purpose

In recent decades, the student population in dormitories has increased notably, primarily attributed to the growing number of international students. Dormitories serve as pivotal environments for student development. The coordination and compatibility among students can significantly influence their overall success. This study aims to introduce an innovative method for roommate selection and room allocation within dormitory settings.

Design/methodology/approach

In this study, initially, using multi-attribute decision-making methods including the Bayesian best-worst method and weighted aggregated sum product assessment, the incompatibility rate among pairs of students is calculated. Subsequently, using a linear mathematical model, roommates are selected and allocated to dormitory rooms pursuing the twin objectives of minimizing the total incompatibility rate and costs. Finally, the grasshopper optimization algorithm is applied to solve large-sized instances.

Findings

The results demonstrate the effectiveness of the proposed method in comparison to two common alternatives, i.e. random allocation and preference-based allocation. Moreover, the proposed method’s applicability extends beyond its current context, making it suitable for addressing various matching problems, including crew pairing and classmate pairing.

Originality/value

This novel method for roommate selection and room allocation enhances decision-making for optimal dormitory arrangements. Inspired by a real-world problem faced by the authors, this study strives to offer a robust solution to this problem.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 28 March 2024

Y. Sun

In recent years, there has been growing interest in the use of stainless steel (SS) in reinforced concrete (RC) structures due to its distinctive corrosion resistance and…

Abstract

Purpose

In recent years, there has been growing interest in the use of stainless steel (SS) in reinforced concrete (RC) structures due to its distinctive corrosion resistance and excellent mechanical properties. To ensure effective synergy between SS and concrete, it is necessary to develop a time-saving approach to accurately determine the ultimate bond strength τu between the two materials in RC structures.

Design/methodology/approach

Three robust machine learning (ML) models, including support vector regression (SVR), random forest (RF) and extreme gradient boosting (XGBoost), are employed to predict τu between ribbed SS and concrete. Model hyperparameters are fine-tuned using Bayesian optimization (BO) with 10-fold cross-validation. The interpretable techniques including partial dependence plots (PDPs) and Shapley additive explanation (SHAP) are also utilized to figure out the relationship between input features and output for the best model.

Findings

Among the three ML models, BO-XGBoost exhibits the strongest generalization and highest accuracy in estimating τu. According to SHAP value-based feature importance, compressive strength of concrete fc emerges as the most prominent feature, followed by concrete cover thickness c, while the embedment length to diameter ratio l/d, and the diameter d for SS are deemed less important features. Properly increasing c and fc can enhance τu between ribbed SS and concrete.

Originality/value

An online graphical user interface (GUI) has been developed based on BO-XGBoost to estimate τu. This tool can be utilized in structural design of RC structures with ribbed SS as reinforcement.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 April 2024

Anton Salov

The purpose of this study is to reveal the dynamics of house prices and sales in spatial and temporal dimensions across British regions.

Abstract

Purpose

The purpose of this study is to reveal the dynamics of house prices and sales in spatial and temporal dimensions across British regions.

Design/methodology/approach

This paper incorporates two empirical approaches to describe the behaviour of property prices across British regions. The models are applied to two different data sets. The first empirical approach is to apply the price diffusion model proposed by Holly et al. (2011) to the UK house price index data set. The second empirical approach is to apply a bivariate global vector autoregression model without a time trend to house prices and transaction volumes retrieved from the nationwide building society.

Findings

Identifying shocks to London house prices in the GVAR model, based on the generalized impulse response functions framework, I find some heterogeneity in responses to house price changes; for example, South East England responds stronger than the remaining provincial regions. The main pattern detected in responses and characteristic for each region is the fairly rapid fading of the shock. The spatial-temporal diffusion model demonstrates the presence of a ripple effect: a shock emanating from London is dispersed contemporaneously and spatially to other regions, affecting prices in nondominant regions with a delay.

Originality/value

The main contribution of this work is the betterment in understanding how house price changes move across regions and time within a UK context.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Open Access
Article
Publication date: 12 January 2024

Patrik Jonsson, Johan Öhlin, Hafez Shurrab, Johan Bystedt, Azam Sheikh Muhammad and Vilhelm Verendel

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Abstract

Purpose

This study aims to explore and empirically test variables influencing material delivery schedule inaccuracies?

Design/methodology/approach

A mixed-method case approach is applied. Explanatory variables are identified from the literature and explored in a qualitative analysis at an automotive original equipment manufacturer. Using logistic regression and random forest classification models, quantitative data (historical schedule transactions and internal data) enables the testing of the predictive difference of variables under various planning horizons and inaccuracy levels.

Findings

The effects on delivery schedule inaccuracies are contingent on a decoupling point, and a variable may have a combined amplifying (complexity generating) and stabilizing (complexity absorbing) moderating effect. Product complexity variables are significant regardless of the time horizon, and the item’s order life cycle is a significant variable with predictive differences that vary. Decoupling management is identified as a mechanism for generating complexity absorption capabilities contributing to delivery schedule accuracy.

Practical implications

The findings provide guidelines for exploring and finding patterns in specific variables to improve material delivery schedule inaccuracies and input into predictive forecasting models.

Originality/value

The findings contribute to explaining material delivery schedule variations, identifying potential root causes and moderators, empirically testing and validating effects and conceptualizing features that cause and moderate inaccuracies in relation to decoupling management and complexity theory literature?

Details

International Journal of Operations & Production Management, vol. 44 no. 13
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 8 June 2023

Masagus M. Ridhwan, Affandi Ismail and Peter Nijkamp

Empirical studies regarding the impact of the real exchange rate (RER) on economic growth are extensively available. However, the literature as a whole appears to report varying…

Abstract

Purpose

Empirical studies regarding the impact of the real exchange rate (RER) on economic growth are extensively available. However, the literature as a whole appears to report varying results, while the causes of such differences have not been analyzed systematically. The present study aims to fill the gap in the literature.

Design/methodology/approach

In this paper, the authors compile 543 empirical estimates from 51 studies of the exchange rate-growth nexus in order to meta-analyze its relationship. Meta-analysis allows the authors to quantitatively synthesize previous empirical studies and explain the variation in the results. This method also enables us to investigate the possibility of publication bias, as there is a tendency in research only to report results that are both statistically significant and show the expected signs.

Findings

After addressing publication bias and heterogeneity in the estimates, the meta-regression results show that RER depreciation (or undervaluation) genuinely favors economic growth. On average, RER depreciation has a greater impact on economic growth in developing countries than the developed ones. The study’s results imply that maintaining an undervalued RER could be favorable to spur economic growth, especially in developing countries.

Originality/value

Initially predominant in the medical literature, meta-analysis has been on a rising edge in economics. This progress has produced many systematic quantitative review analyses with continuously improved statistical-econometric practices related to economic variables. However, to the authors’ knowledge, no comprehensive meta-regression analysis of the relationship between exchange rate and economic growth has been conducted and published in any publicly accessible academic outlet. Therefore, this study aims to fill this gap in the literature.

Details

Journal of Economic Studies, vol. 51 no. 2
Type: Research Article
ISSN: 0144-3585

Keywords

1 – 10 of 180