Search results

1 – 10 of 28
Open Access
Book part
Publication date: 4 May 2018

Vera Viena, Elvitriana, Muhammad Nizar, Sari Wardani and Suhendrayatna

Purpose – In this research, we have prepared activated carbon (AC) from the waste of banana peels (Musa acuminate L.) using potassium hydroxide (KOH) for carbon monoxide (CO…

Abstract

Purpose – In this research, we have prepared activated carbon (AC) from the waste of banana peels (Musa acuminate L.) using potassium hydroxide (KOH) for carbon monoxide (CO) adsorption from motorcycle gas emission.

Design/Methodology/Approach – The activation was conducted using a chemical activator (KOH) at various concentrations of 1, 2, and 3 N for 1, 2, and 3 h, respectively. Characteristics of banana peels AC (BPAC) produced were analyzed using the Fourier-transform infra-red spectroscopy and scanning electron microscopy.

Findings – Results showed that KOH concentration and activation time strongly affected the CO adsorption and opening of the AC surface pore. There was an increase in the CO sorption when the KOH concentration was increased up to 3 N concentration. The highest CO adsorption from the emission occurred at 70.95% under KOH concentration of 3 N during the 3-h preparation.

Research Limitations/Implications – BPAC has been used as an adsorbent for only CO from motorcycle gas emission but not as an adsorbent for HC, NO, NOx, or H2S.

Practical Implications – BPAC can be used as the potential adsorbent for the removal of CO from motorcycle gas emission, and it is an environmental friendly, low cost, and easy to make adsorbent.

Originality/Value – In this study, the AC is made from biomass and is used in wastewater treatment, but limited studies are found on the removal of CO from motorcycle gas emission.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Article
Publication date: 8 March 2021

Wenjie Wang, Mengran Zhang, Binxia Zhao, Linxue Liu, Ruixuan Han and Nan Wang

The purpose of this paper is to improve the degradation efficiency of Rhodamine B (RhB) by new photocatalytic materials.

265

Abstract

Purpose

The purpose of this paper is to improve the degradation efficiency of Rhodamine B (RhB) by new photocatalytic materials.

Design/methodology/approach

Binary Z-scheme g-C3N4/Bi2WO6 photocatalytic material was synthesized by the one-step hydrothermal reaction. The construction of Z-scheme heterojunction led to the rapid separation of photogenerated electrons and holes, which would degrade RhB into small molecular substances to achieve the purpose of degradation.

Findings

It was found that Bi2WO6/25%g-C3N4 displayed the highest photocatalytic activity, which was about 1.44 and 1.34 times higher than that of pure Bi2WO6 and g-C3N4, respectively. According to the trapping experiments, the superoxide radical (·O2−) was the major active species of the RhB decomposition in Bi2WO6/g-C3N4 catalysts.

Originality/value

The successful synthesis of Z-scheme Bi2WO6/g-C3N4 provides new ideas and references for the design of catalysts with high photocatalytic activity, which should have wide applications in the future.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 11 January 2024

Adewale Allen Sokan-Adeaga, Godson R.E.E. Ana, Abel Olajide Olorunnisola, Micheal Ayodeji Sokan-Adeaga, Hridoy Roy, Md Sumon Reza and Md. Shahinoor Islam

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Abstract

Purpose

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Design/methodology/approach

The milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.

Findings

The results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.

Practical implications

The finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.

Originality/value

This paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.

Highlights

  1. Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

  2. Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

  3. Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

  4. Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 14 December 2021

Joseph Nyamoko Tinega and Charles Mwaura Warui

The aim of this study is to examine the effect of carbonization on the surface and its influence on heavy metal removal by water hyacinth based carbon.

Abstract

Purpose

The aim of this study is to examine the effect of carbonization on the surface and its influence on heavy metal removal by water hyacinth based carbon.

Design/methodology/approach

Dried water hyacinth stem was used as precursor to prepare carbon based adsorbent by pyrolysis method. The adsorbent proximate (ash, volatile matter and fixed carbon) and elemental (carbon hydrogen nitrogen sulfur) composition, surface area, pore size distribution, surface chemistry was examined and compared.

Findings

The results demonstrated that through carbonization in comparison to dried water hyacinth stem, it increased the surface area (from 58.46 to 328.9 m2/g), pore volume (from 0.01 to 0.07 cc/g), pore size (from 1.44 to 7.557 Å) thus enhancing heavy metal adsorption. The metal adsorption capacity of Cd, Pb and Zn was measured and analyzed through induced coupled plasma-mass spectrometer. At metal concentration of 0.1 mg/l adsorption rate for Cd, Pb and Zn was 99% due to increased large surface area, coupled with large pore size and volume. Furthermore, the adsorbent surface hydroxyl group (OH) enhanced adsorption of positively charged metal ions through electrostatic forces.

Practical implications

It is presumed that not only adsorption with synthetic wastewater but real wastewater samples should be examined to ascertain the viability of adsorbent for commercial application.

Originality/value

There are little or scanty data on the effects of carbonization on water hyacinth stem based carbon and subsequent effects on heavy metal removal in effluents.

Details

Management of Environmental Quality: An International Journal, vol. 33 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 5 September 2023

Farish Armani Hamidon, Faridah Lisa Supian, Mazlina Mat Darus, Yeong Yi Wong and Nur Farah Nadia Abd Karim

The host–guest molecules are often used in various fields and applications. This paper aims to discuss the role of host–guest complexes in the textile industry, focusing on…

Abstract

Purpose

The host–guest molecules are often used in various fields and applications. This paper aims to discuss the role of host–guest complexes in the textile industry, focusing on calixarenes as a potential adsorbent for hazardous dyes. The paper begins with an introduction to nanotechnology and its many uses, including textiles.

Design/methodology/approach

The risks associated with the utilisation of dyes and its adverse effects on the environment are then also highlighted. This paper also discusses the structure and characteristics of calixarenes and their potential use as an adsorbent to extract toxic metals from aqueous solutions. The paper also explains the molecular structure of calixarenes, especially the ability of its upper and lower rims, which can be altered to yield derivatives with various selectivities for diverse guest ions and small molecules. In addition, the application of various host–guest molecules in the textiles industry to extract dyes also had been discussed.

Findings

In conclusion, the paper highlights the essential in establishing a systematic review on the significance of selective adsorbents, such as calixarenes, to isolate particular targets from diverse matrices in the textile industry.

Research limitations/implications

Only discussing several applications for several host–guest molecules.

Originality/value

The paper concisely describes various host–guest molecule applications in the textile industry, with each molecule being elaborated upon in detail.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 February 2018

Abdulmannan Fadel, Andrew Plunkett, Weili Li, Yazan Ranneh, Vivian Elewosi Tessu Gyamfi, Yasser Salmon, Rosemarie Roma Nyaranga and Jason Ashworth

The purpose of this study is to discuss recent research on arabinoxylans from rice bran and wheat byproducts and their immunomodulatory potentials. Also, a potential receptor for…

Abstract

Purpose

The purpose of this study is to discuss recent research on arabinoxylans from rice bran and wheat byproducts and their immunomodulatory potentials. Also, a potential receptor for arabinoxylans is proposed in relation to arabinoxylans structure.

Design/methodology/approach

This review summarises recent publications on arabinoxylans from rice bran and wheat, classification of arabinoxylans, a brief background on their method of extraction and their immunomodulatory potentials as they induce pro-inflammatory response in vitro, in vivo and in humans. The mechanism of action in which arabinoxylans modulate the immune activity is yet to be discovered, However, the authors have proposed a potential receptor for arabinoxylans in relation to arabinoxylans structure and molecular weight.

Findings

The effects of arabinoxylans from rice bran and wheat on the immune response was found to cause a pro-inflammatory response in vitro, in vivo and in humans. Also, the immune response depends on arabinoxylans structure, the degree of branching and origin.

Originality/value

This review paper focuses on the effects of arabinoxylans from rice bran and wheat on immunomodulatory potentials in vitro, in vivo and in humans. A new mechanism of action has been proposed based on the literature and via linking between arabinoxylans and lipopolysaccharide structure, molecular weight and suggested proposed receptor, which might be activated via both of them.

Details

Nutrition & Food Science, vol. 48 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 March 1974

Millions of the British people have for some years now been struggling valiantly to live with hard times, watching them day by day grow worse but always hopefully that the cloud…

Abstract

Millions of the British people have for some years now been struggling valiantly to live with hard times, watching them day by day grow worse but always hopefully that the cloud had a silver lining; that one day, reason and a sense of direction would prevail. Tyranny in many forms is a feature of history; the greatest epics have been risings of ordinary people to overthrow it. The modern form of tyranny is that of Money; the cruel and sinister ways in which it can be obtained and employed and the ineffectiveness of any measures taken to control the evils which result. Money savings over the years and the proverbial bank book, once the sure safeguard of ordinary people, are whittled away in value, never to recover. Causes always seemed to be contained within the country's own economy and industrial practices, and to this extent should have been possible of control. The complex and elaborate systems constructed by the last Government were at least intended for the purpose, but each attempt to curb excessive demands for more money, more and more for doing less and less— the nucleus of inflation—produced extreme reactions, termed collectively “industrial strife”. Every demand met without compensatory returns in increased work, inevitably led to rises in prices, felt most keenly in the field of food and consumer goods. What else would be expected from such a situation?

Details

British Food Journal, vol. 76 no. 3
Type: Research Article
ISSN: 0007-070X

Article
Publication date: 7 September 2023

Ibrahim A. Amar, Aeshah Alzarouq, Wajdan Mohammed, Mengfei Zhang and Noarhan Matroed

This study aims to explore the possibility of using magnetic biochar composite (MBCC) derived from Heglig tree bark (HTB) powder (agricultural solid waste) and cobalt ferrite (CoFe…

Abstract

Purpose

This study aims to explore the possibility of using magnetic biochar composite (MBCC) derived from Heglig tree bark (HTB) powder (agricultural solid waste) and cobalt ferrite (CoFe2O4, CFO) for oil spill removal from seawater surface.

Design/methodology/approach

One-pot co-precipitation route was used to synthesize MBCC. The prepared materials were characterized by X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy. The densities of the prepared materials were also estimated. Crude, diesel engine and gasoline engine oils were used as seawater pollutant models. The gravimetric oil removal (GOR) method was used for removing oil spills from seawater using MBCC as a sorbent material.

Findings

The obtained results revealed that the prepared materials (CFO and MBCC) were able to remove the crude oil and its derivatives from the seawater surface. Besides, when the absorbent amount was 0.01 g, the highest GOR values for crude oil (31.96 ± 1.02 g/g) and diesel engine oil (14.83 ± 0.83 g/g) were obtained using MBCC as an absorbent. For gasoline engine oil, the highest GOR (27.84 ± 0.46 g/g) was attained when CFO was used as an absorbent.

Originality/value

Oil spill removal using MBCC derived from cobalt ferrite and HTB. Using tree bark as biomass (eco-friendly, readily available and low-cost) for magnetic biochar preparation also is a promising method for minimizing agricultural solid wastes (e.g. HTB) and obtaining value-added-products.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Book part
Publication date: 4 May 2018

Abstract

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

1 – 10 of 28