Search results

1 – 10 of 114
Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 5 April 2024

Chi Aloysius Ngong, Kesuh Jude Thaddeus and Josaphat Uchechukwu Joe Onwumere

This paper aims to examine the causation linking financial technology to economic growth in the East African Community states from 1997 to 2019.

Abstract

Purpose

This paper aims to examine the causation linking financial technology to economic growth in the East African Community states from 1997 to 2019.

Design/methodology/approach

Autoregressive distributed lag is used. Gross domestic product per capita proxies economic growth, automated teller machines, point of sale, debit card ownership and mobile banking measure financial technology.

Findings

The results unveil a significant relationship between financial technology and economic growth. The findings show bidirectional causality between automated teller machine and economic growth, with unidirectional causation from economic growth to point of sales and internet banking, mobile banking and government effectiveness to economic growth. The error correction term is negatively significant, demonstrating a long-term convergence between Fintech measures and economic growth.

Research limitations/implications

The governments should effectively enact and implement policies that protect investments in financial technologies to boost economic growth in the East African Community countries. The government should reduce taxes on financial technology equipment and related services. The use of automated teller machine, debit card ownership and internet banking should be encouraged through cashless transactions. Financial institutions should adopt cashless operation policies to encourage the use of financial technologies.

Originality/value

Research results on the bond between financial technology and economic growth are not conclusive. These studies demonstrate that technological innovations are double edged-swords, with both positive and negative sides. The results are conflicting; some reveal positive relationships, while others show negative links. Hence, research is required to fill the lacuna.

Details

Journal of Economics, Finance and Administrative Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2077-1886

Keywords

Article
Publication date: 26 April 2024

Mawloud Titah and Mohammed Abdelghani Bouchaala

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely…

Abstract

Purpose

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.

Design/methodology/approach

The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.

Findings

Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.

Originality/value

An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 2 May 2024

Chengxiong Lin and Wenming Wu

This paper aims to introduce a custom-designed integrated nucleic acid detection polymerase chain reaction (PCR) instrument for clinical detection applications.

Abstract

Purpose

This paper aims to introduce a custom-designed integrated nucleic acid detection polymerase chain reaction (PCR) instrument for clinical detection applications.

Design/methodology/approach

The PCR instrument can make rapid, sensitive, low-cost and quantitative molecular diagnosis compared with the current routine test flow from the pipette, series reagent to RT-PCR by manual manipulation. By integrating the multichannel automatic pipetting module, heat amplification module and real-time fluorescence detection module for the first time, the custom-designed integrated nucleic acid detection PCR instrument can achieve sample collection, subpackage, mixing, extracting, measuring and result presentation.

Findings

The multichannel automatic pipetting module was assembled with an accuracy of 0.4% (2 microliters) for accuracy measurement. Besides, the accuracy and sensitivity of nucleic acid using integrated low-cost nucleic acid detection PCR instruments were checked with COV-2019 virus (staining method) and African swine fever virus (probe method) under different concentrations.

Practical implications

Because of its high cost, complex system and bulky laboratory settings, including sample subpackage, mixing, extracting, measuring and finally result in presentation, the current nucleic acid detection system is not suitable for field operation and disease diagnosis in remote areas. The group independently designed and assembled an integrated low-cost multichannel nucleic acid detection PCR instrument, including a multichannel automatic pipetting module, a heat amplification module and a real-time fluorescence detection module.

Originality/value

The above equipment showed better reliability compared with commercial qPCR. These results can lay the foundation for functional, fast and low-cost PCR equipment for trace measurements.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 May 2024

Mikias Gugssa, Long Li, Lina Pu, Ali Gurbuz, Yu Luo and Jun Wang

Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However…

Abstract

Purpose

Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However, it is still challenging to implement automated safety monitoring methods in near real time or in a time-efficient manner in real construction practices. Therefore, this study developed a novel solution to enhance the time efficiency to achieve near-real-time safety glove detection and meanwhile preserve data privacy.

Design/methodology/approach

The developed method comprises two primary components: (1) transfer learning methods to detect safety gloves and (2) edge computing to improve time efficiency and data privacy. To compare the developed edge computing-based method with the currently widely used cloud computing-based methods, a comprehensive comparative analysis was conducted from both the implementation and theory perspectives, providing insights into the developed approach’s performance.

Findings

Three DL models achieved mean average precision (mAP) scores ranging from 74.92% to 84.31% for safety glove detection. The other two methods by combining object detection and classification achieved mAP as 89.91% for hand detection and 100% for glove classification. From both implementation and theory perspectives, the edge computing-based method detected gloves faster than the cloud computing-based method. The edge computing-based method achieved a detection latency of 36%–68% shorter than the cloud computing-based method in the implementation perspective. The findings highlight edge computing’s potential for near-real-time detection with improved data privacy.

Originality/value

This study implemented and evaluated DL-based safety monitoring methods on different computing infrastructures to investigate their time efficiency. This study contributes to existing knowledge by demonstrating how edge computing can be used with DL models (without sacrificing their performance) to improve PPE-glove monitoring in a time-efficient manner as well as maintain data privacy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Andrei Bonamigo, Andrezza Nunes, Lucas Ferreira Mendes, Marcela Cohen Martelotte and Herlandí De Souza Andrade

This study aims to examine the impact of Lean 4.0 practices on value co-creation in the dairy ecosystem.

Abstract

Purpose

This study aims to examine the impact of Lean 4.0 practices on value co-creation in the dairy ecosystem.

Design/methodology/approach

Data collection were carried out through a questionary application with 126 professionals linked to the dairy ecosystem, including milk producers, milk cooperatives and milk transporters. The data were analyzed using Cluster Analysis, Mann-Whitney test and Chi-Square test.

Findings

A strong relation was found between the use of Lean 4.0 tools and the increase in operational performance, in addition to milk quality. Moreover, it can be noted that the use of digital technologies from Industry 4.0 has a strong relation with dairy production optimization, in other words, it is possible to be more efficient in the dairy process via Lean 4.0 adoption.

Research limitations/implications

The study is limited to analyzing the Brazilian dairy ecosystem. The results presented may not reflect the characteristics of the other countries.

Practical implications

Once the potential empirical impacts of the relation between Lean 4.0 and value co-creation are elucidated, it is possible to direct strategies for decision-making and guide efforts by researchers and professionals to deal with the waste mitigation present in the dairy sector.

Social implications

Lean 4.0 proves to be a potential solution to improve the operational performance of the dairy production system. Lean 4.0, linked to value co-creation, allows the integration of the production sector with consumers, through smart technologies, so new services and experiences can be provided to the consumer market. Additionally, the consumer experience can be stimulated based on Lean 4.0, once the quality specification is highlighted based on data science and smart management control.

Originality/value

To the best of the authors’ knowledge, this is the first study that analyzes the interrelationship between the Lean 4.0 philosophy and the value co-creation in the dairy ecosystem. In this sense, the study reveals the main contributions of this interrelation to the dairy sector via value co-creation, which demonstrates a new perspective on the complementarity of resources, elimination of process losses and new experiences for the user through digital technologies integrated with the Lean Thinking approach.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 16 February 2022

Pragati Agarwal, Sanjeev Swami and Sunita Kumari Malhotra

The purpose of this paper is to give an overview of artificial intelligence (AI) and other AI-enabled technologies and to describe how COVID-19 affects various industries such as…

3585

Abstract

Purpose

The purpose of this paper is to give an overview of artificial intelligence (AI) and other AI-enabled technologies and to describe how COVID-19 affects various industries such as health care, manufacturing, retail, food services, education, media and entertainment, banking and insurance, travel and tourism. Furthermore, the authors discuss the tactics in which information technology is used to implement business strategies to transform businesses and to incentivise the implementation of these technologies in current or future emergency situations.

Design/methodology/approach

The review provides the rapidly growing literature on the use of smart technology during the current COVID-19 pandemic.

Findings

The 127 empirical articles the authors have identified suggest that 39 forms of smart technologies have been used, ranging from artificial intelligence to computer vision technology. Eight different industries have been identified that are using these technologies, primarily food services and manufacturing. Further, the authors list 40 generalised types of activities that are involved including providing health services, data analysis and communication. To prevent the spread of illness, robots with artificial intelligence are being used to examine patients and give drugs to them. The online execution of teaching practices and simulators have replaced the classroom mode of teaching due to the epidemic. The AI-based Blue-dot algorithm aids in the detection of early warning indications. The AI model detects a patient in respiratory distress based on face detection, face recognition, facial action unit detection, expression recognition, posture, extremity movement analysis, visitation frequency detection, sound pressure detection and light level detection. The above and various other applications are listed throughout the paper.

Research limitations/implications

Research is largely delimited to the area of COVID-19-related studies. Also, bias of selective assessment may be present. In Indian context, advanced technology is yet to be harnessed to its full extent. Also, educational system is yet to be upgraded to add these technologies potential benefits on wider basis.

Practical implications

First, leveraging of insights across various industry sectors to battle the global threat, and smart technology is one of the key takeaways in this field. Second, an integrated framework is recommended for policy making in this area. Lastly, the authors recommend that an internet-based repository should be developed, keeping all the ideas, databases, best practices, dashboard and real-time statistical data.

Originality/value

As the COVID-19 is a relatively recent phenomenon, such a comprehensive review does not exist in the extant literature to the best of the authors’ knowledge. The review is rapidly emerging literature on smart technology use during the current COVID-19 pandemic.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 3
Type: Research Article
ISSN: 2053-4620

Keywords

Open Access
Article
Publication date: 28 November 2022

Elena Stefana, Paola Cocca, Federico Fantori, Filippo Marciano and Alessandro Marini

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

1565

Abstract

Purpose

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

Design/methodology/approach

The authors conducted a literature review about the studies focusing on approaches combining OEE with monetary units and/or resource issues. The authors developed an approach based on Overall Equipment Cost Loss (OECL), introducing a component for the production resource consumption of a machine. A real case study about a smart multicenter three-spindle machine is used to test the applicability of the approach.

Findings

The paper proposes Resource Overall Equipment Cost Loss (ROECL), i.e. a new KPI expressed in monetary units that represents the total cost of losses (including production resource ones) caused by inefficiencies and deviations of the machine or equipment from its optimal operating status occurring over a specific time period. ROECL enables to quantify the variation of the product cost occurring when a machine or equipment changes its health status and to determine the actual product cost for a given production order. In the analysed case study, the most critical production orders showed an actual production cost about 60% higher than the minimal cost possible under the most efficient operating conditions.

Originality/value

The proposed approach may support both production and cost accounting managers during the identification of areas requiring attention and representing opportunities for improvement in terms of availability, performance, quality, and resource losses.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 12 December 2023

Laura Lucantoni, Sara Antomarioni, Filippo Emanuele Ciarapica and Maurizio Bevilacqua

The Overall Equipment Effectiveness (OEE) is considered a standard for measuring equipment productivity in terms of efficiency. Still, Artificial Intelligence solutions are rarely…

Abstract

Purpose

The Overall Equipment Effectiveness (OEE) is considered a standard for measuring equipment productivity in terms of efficiency. Still, Artificial Intelligence solutions are rarely used for analyzing OEE results and identifying corrective actions. Therefore, the approach proposed in this paper aims to provide a new rule-based Machine Learning (ML) framework for OEE enhancement and the selection of improvement actions.

Design/methodology/approach

Association Rules (ARs) are used as a rule-based ML method for extracting knowledge from huge data. First, the dominant loss class is identified and traditional methodologies are used with ARs for anomaly classification and prioritization. Once selected priority anomalies, a detailed analysis is conducted to investigate their influence on the OEE loss factors using ARs and Network Analysis (NA). Then, a Deming Cycle is used as a roadmap for applying the proposed methodology, testing and implementing proactive actions by monitoring the OEE variation.

Findings

The method proposed in this work has also been tested in an automotive company for framework validation and impact measuring. In particular, results highlighted that the rule-based ML methodology for OEE improvement addressed seven anomalies within a year through appropriate proactive actions: on average, each action has ensured an OEE gain of 5.4%.

Originality/value

The originality is related to the dual application of association rules in two different ways for extracting knowledge from the overall OEE. In particular, the co-occurrences of priority anomalies and their impact on asset Availability, Performance and Quality are investigated.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 114