Search results

1 – 10 of over 6000
Open Access
Article
Publication date: 17 November 2023

Peiman Tavakoli, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin…

Abstract

Purpose

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin smart and sustainable built environment (DT) for predictive asset management (PAM) in building facilities.

Design/methodology/approach

Qualitative research data were collected through a comprehensive scoping review of secondary sources. Additionally, primary data were gathered through interviews with industry specialists. The analysis of the data served as the basis for developing blockchain-based DT data provenance models and scenarios. A case study involving a conference room in an office building in Stockholm was conducted to assess the proposed data provenance model. The implementation utilized the Remix Ethereum platform and Sepolia testnet.

Findings

Based on the analysis of results, a data provenance model on blockchain-based DT which ensures the reliability and trustworthiness of data used in PAM processes was developed. This was achieved by providing a transparent and immutable record of data origin, ownership and lineage.

Practical implications

The proposed model enables decentralized applications (DApps) to publish real-time data obtained from dynamic operations and maintenance processes, enhancing the reliability and effectiveness of data for PAM.

Originality/value

The research presents a data provenance model on a blockchain-based DT, specifically tailored to PAM in building facilities. The proposed model enhances decision-making processes related to PAM by ensuring data reliability and trustworthiness and providing valuable insights for specialists and stakeholders interested in the application of blockchain technology in asset management and data provenance.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Content available
Article
Publication date: 26 November 2020

Christopher Santi Götz, Patrik Karlsson and Ibrahim Yitmen

The blockchain-based digital twin has been recognized as a prominent technological ecosystem featuring synergies with both established and emergent information management…

1948

Abstract

Purpose

The blockchain-based digital twin has been recognized as a prominent technological ecosystem featuring synergies with both established and emergent information management practice. The purpose of this research is to explore the applicability, interoperability and integrability of a blockchain-based digital twin for asset life cycle management and develop a model of framework which positions the digital twin within a broader context of current management practice and technological availability.

Design/methodology/approach

A systematic literature review was performed to map use cases of digital twin, IoT, blockchain and smart contract technologies. Surveys of industry professionals and analyses were conducted focussing on the mapped use cases' life cycle–centric applicability, interoperability and integrability with current asset life cycle management practice, exploring decision support capabilities and industry insights. Lastly, a model of framework was developed based on the use case, interoperability and integrability findings.

Findings

The results support approaching digitization initiatives with blockchain-based digital twins and the positioning of the concept as both a strategic tool and a multifunctional on-field support application. Integrability enablers include progression towards BIM level 3, decentralized program hubs, modular cross-technological platform interfaces, as well as mergeable and scalable blockchains.

Practical implications

Knowledge of use cases help highlight the functionality of an integrated technological ecosystem and its connection to comprehensive sets of asset life cycle management aspects. Exploring integrability enablers contribute to the development of management practice and solution development as user expectations and technological prerequisites are interlinked.

Originality/value

The research explores asset life cycle management use cases, interoperability and integrability enablers of blockchain-based digital twins and positions the technological ecosystem within current practice and technological availability.

Details

Smart and Sustainable Built Environment, vol. 11 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 19 January 2023

Benjamin Hellenborn, Oscar Eliasson, Ibrahim Yitmen and Habib Sadri

The purpose of this study is to identify the key data categories and characteristics defined by asset information requirements (AIR) and how this affects the development and…

1569

Abstract

Purpose

The purpose of this study is to identify the key data categories and characteristics defined by asset information requirements (AIR) and how this affects the development and maintenance of an asset information model (AIM) for a blockchain-based digital twin (DT).

Design/methodology/approach

A mixed-method approach involving qualitative and quantitative analysis was used to gather empirical data through semistructured interviews and a digital questionnaire survey with an emphasis on AIR for blockchain-based DTs from a data-driven predictive analytics perspective.

Findings

Based on the analysis of results three key data categories were identified, core data, static operation and maintenance (OM) data, and dynamic OM data, along with the data characteristics required to perform data-driven predictive analytics through artificial intelligence (AI) in a blockchain-based DT platform. The findings also include how the creation and maintenance of an AIM is affected in this context.

Practical implications

The key data categories and characteristics specified through AIR to support predictive data-driven analytics through AI in a blockchain-based DT will contribute to the development and maintenance of an AIM.

Originality/value

The research explores the process of defining, delivering and maintaining the AIM and the potential use of blockchain technology (BCT) as a facilitator for data trust, integrity and security.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 4 December 2023

Diego Espinosa Gispert, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance…

Abstract

Purpose

The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance practices in building facilities that could enable proactive and data-driven decision-making during the Operation and Maintenance (O&M) process.

Design/methodology/approach

A scoping literature review was accomplished to establish the theoretical foundation for the current investigation. A study on developing an ontology-based AIM for predictive maintenance in building facilities was conducted. Semi-structured interviews were conducted with industry professionals to gather qualitative data for ontology-based AIM framework validation and insights.

Findings

The research findings indicate that while the development of ontology faced challenges in defining missing entities and relations in the context of predictive maintenance, insights gained from the interviews enabled the establishment of a comprehensive framework for ontology-based AIM adoption in the Facility Management (FM) sector.

Practical implications

The proposed ontology-based AIM has the potential to enable proactive and data-driven decision-making during the process, optimizing predictive maintenance practices and ultimately enhancing energy efficiency and sustainability in the building industry.

Originality/value

The research contributes to a practical guide for ontology development processes and presents a framework of an Ontology-based AIM for a Digital Twin platform.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 1 October 2019

Kay Rogage, Adrian Clear, Zaid Alwan, Tom Lawrence and Graham Kelly

Buildings and their use is a complex process from design to occupation. Buildings produce huge volumes of data such as building information modelling (BIM), sensor (e.g. from…

4429

Abstract

Purpose

Buildings and their use is a complex process from design to occupation. Buildings produce huge volumes of data such as building information modelling (BIM), sensor (e.g. from building management systems), occupant and building maintenance data. These data can be spread across multiple disconnected systems in numerous formats, making their combined analysis difficult. The purpose of this paper is to bring these sources of data together, to provide a more complete account of a building and, consequently, a more comprehensive basis for understanding and managing its performance.

Design/methodology/approach

Building data from a sample of newly constructed housing units were analysed, several properties were identified for the study and sensors deployed. A sensor agnostic platform for visualising real-time building performance data was developed.

Findings

Data sources from both sensor data and qualitative questionnaire were analysed and a matrix of elements affecting building performance in areas such as energy use, comfort use, integration with technology was presented. In addition, a prototype sensor visualisation platform was designed to connect in-use performance data to BIM.

Originality/value

This work presents initial findings from a post occupancy evaluation utilising sensor data. The work attempts to address the issues of BIM in-use scenarios for housing sector. A prototype was developed which can be fully developed and replicated to wider housing projects. The findings can better address how indoor thermal comfort parameters can be used to improve housing stock and even address elements such as machine learning for better buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 4 October 2019

Bilal İlhan

Most of the major Islamic countries’ stock exchanges have not been able to perform at the same pace with the major emerging countries’ stock exchanges since the mid of 1990s. The…

2545

Abstract

Purpose

Most of the major Islamic countries’ stock exchanges have not been able to perform at the same pace with the major emerging countries’ stock exchanges since the mid of 1990s. The purpose of this paper is to examine the implications of stock market liberalization on cost of capital as one of the crucial driver to stock market development and physical investment growth in emerging Islamic countries.

Design/methodology/approach

This study employs static panel data techniques on the sample of seven emerging Islamic countries over the years 1989-2008.

Findings

The findings of this study suggest that stock market liberalization significantly reduces cost of capital in the stock markets of sample Islamic countries, which carries policy-oriented implications. Reduction in the cost of capital increases the number of exchange-traded companies, profitability of projects and aggregate investment level; therefore, the study findings are highly concerned by the economic policymakers, corporations and investors alike.

Research limitations/implications

In the literature, different proxies are employed to measure stock market liberalization and cost of capital as well. Due to data limitations, this study could not employ different proxies for both, especially for stock market liberalization, for robustness purpose. That limitation further restricted the coverage of Islamic stock markets and time period. Therefore, generalization of the study results for overall Islamic stock markets can be slightly drawn.

Originality/value

The paper provides further understanding regarding the effects of SML on cost of capital, thereby indirectly on the stock market development, in the context of EIC.

Details

Journal of Capital Markets Studies, vol. 3 no. 2
Type: Research Article
ISSN: 2514-4774

Keywords

Content available
Article
Publication date: 6 July 2015

Peter E.D. Love, Jane Matthews and Steve Lockley

4634

Abstract

Details

Built Environment Project and Asset Management, vol. 5 no. 3
Type: Research Article
ISSN: 2044-124X

Content available
Article
Publication date: 2 June 2022

Faris Elghaish, Sandra T. Matarneh, David John Edwards, Farzad Pour Rahimian, Hatem El-Gohary and Obuks Ejohwomu

This paper aims to explore the emerging relationship between Industry 4.0 (I4.0) digital technologies (e.g. blockchain, Internet of Things (IoT) and artificial intelligence (AI)…

2841

Abstract

Purpose

This paper aims to explore the emerging relationship between Industry 4.0 (I4.0) digital technologies (e.g. blockchain, Internet of Things (IoT) and artificial intelligence (AI)) and the construction industry’s gradual transition into a circular economy (CE) system to foster the adoption of circular economy in the construction industry.

Design/methodology/approach

A critical and thematic analysis conducted on 115 scientific papers reveals a noticeable growth in adopting digital technologies to leverage a CE system. Moreover, a conceptual framework is developed to show the interrelationship between different I4.0 technologies to foster the implantation of CE in the construction industry.

Findings

Most of the existing bodies of research provide conceptual solutions rather than developing workable applications and the future of smart cities. Moreover, the coalescence of different technologies is highly recommended to enable tracking of building assets’ and components’ (e.g. fixtures and fittings and structural components) performance, which enables users to optimize the salvage value of components reusing or recycling them just in time and extending assets’ operating lifetime. Finally, circular supply chain management must be adopted for both new and existing buildings to realise the industry's CE ambitions. Hence, further applied research is required to foster CE adoption for existing cities and infrastructure that connects them.

Originality/value

This paper investigates the interrelationships between most emerging digital technologies and circular economy and concludes with the development of a conceptual digital ecosystem to integrate IoT, blockchain and AI into the operation of assets to direct future practical research applications

Open Access
Article
Publication date: 13 March 2024

Lina Gharaibeh, Kristina Eriksson and Björn Lantz

Perceived benefits of building information modelling (BIM) have been discussed for some time, but cost–benefit benchmarking has been inconsistent. The purpose of this paper is to…

Abstract

Purpose

Perceived benefits of building information modelling (BIM) have been discussed for some time, but cost–benefit benchmarking has been inconsistent. The purpose of this paper is to investigate BIM feasibility and evaluate investment worth to elucidate and develop the current understanding of BIM merit. The aim of the study is to propose a research agenda towards a more holistic perspective of BIM use incorporating quantifying investment return.

Design/methodology/approach

An in-depth examination of research patterns has been conducted to identify challenges in the assessment of the investment value and return on investment (ROI) for BIM in the construction industry. A total of 75 research articles were considered for the final literature review. An evaluation of the literature is conducted using a combination of bibliometric analysis and systematic reviews.

Findings

This study, which analysed 75 articles, unveils key findings in quantifying BIM benefits, primarily through ROI calculation. Two major research gaps are identified: the absence of a standardized BIM ROI method and insufficient exploration of intangible benefits. Research focus varies across phases, emphasizing design and construction integration and exploring post-construction phases. The study categorizes quantifiable factors, including productivity, changes and rework reduction, requests for information reduction, schedule efficiency, safety, environmental sustainability and operations and facility management. These findings offer vital insights for researchers and practitioners, enhancing understanding of ’BIM’s financial benefits and signalling areas for further exploration in construction.

Originality/value

The ’study’s outcomes offer the latest insights for researchers and practitioners to create effective approaches for quantifying ’BIM’s financial benefits. Additionally, the proposed research agenda aims to improve the current limited understanding of BIM feasibility and investment worth evaluation. Results of the study could assist practitioners in overcoming limitations associated with BIM investment and economic evaluations in the construction industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Content available
Article
Publication date: 8 July 2014

Mark Shelbourn and David Proverbs

81

Abstract

Details

Structural Survey, vol. 32 no. 3
Type: Research Article
ISSN: 0263-080X

1 – 10 of over 6000