Search results

1 – 10 of 47
Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 September 2020

Asif Ur Rehman and Vincenzo M. Sglavo

Three-dimensional (3D) printing technology allows geometric complexity and customization with a significant reduction in the structural environmental impact. Nevertheless, it…

Abstract

Purpose

Three-dimensional (3D) printing technology allows geometric complexity and customization with a significant reduction in the structural environmental impact. Nevertheless, it poses a serious threat to the environment when organic binders are used. Binder jet printing of alkali-activated geopolymer precursor can represent a successful and environmental-friendly alternative.

Design/methodology/approach

The present work reports about the successful 3D printing of metakaolin-based alkali-activated concrete, with dimensional integrity and valuable mechanical behavior.

Findings

The geometric behavior was studied as a function of alkali activator flow rate, and the minimum geometric deviation with complete saturation was recorded at 103 mg/s. The printed specimen is characterized by a modulus of rupture as high as 4.4 MPa at 135 mg/s.

Practical implications

The 3D printed geopolymer-based concrete can be potentially used in a wide range of structural applications from construction to thermal insulation elements.

Originality/value

The analysis of the 3D geopolymer-based concrete printing system and material conducted in this paper is original.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 August 2021

Asif Ur Rehman and Vincenzo M. Sglavo

Recent advances in 3D printing construction elements have focused on ordinary Portland cement (OPC) concrete using polymeric binders; herein, this study aims to produce the same…

Abstract

Purpose

Recent advances in 3D printing construction elements have focused on ordinary Portland cement (OPC) concrete using polymeric binders; herein, this study aims to produce the same using pure water.

Design/methodology/approach

A binder jet printer prototype was used to fabricate specimens that are used to assess geometric and mechanical properties. Two distinct water-based binder formulations, compatible with OPC chemistry and piezoelectric jetting device, were used: pure water and water-polyvinyl alcohol (98:2 w/w) solution.

Findings

This study examines the effect of binder flow rate on dimensional accuracy. Furthermore, the changes in the mechanical properties over time with hydration have been investigated.

Practical implications

Results indicate that the increase in mechanical strength of Portland cement concrete with pure water was consistent; however, it was delayed by the water: PVA (98:2 w/w) solution. Post-curing by water vapor hardened the structure with the removal of layering native to 3DP and decreased infilling porosity by diffusion mechanism.

Originality/value

This paper has used pure water jetting for BJT of Portland cement-containing bodies.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 June 2023

Asif Ur Rehman, Burak Karakas, Muhammad Arif Mahmood, Berkan Başaran, Rashid Ur Rehman, Mertcan Kirac, Marwan Khraisheh, Metin Uymaz Salamci and Rahmi Ünal

For metal additive manufacturing, metallic powders are usually produced by vacuum induction gas atomization (VIGA) through the breakup of liquid metal into tiny droplets by gas…

Abstract

Purpose

For metal additive manufacturing, metallic powders are usually produced by vacuum induction gas atomization (VIGA) through the breakup of liquid metal into tiny droplets by gas jets. VIGA is considered a cost-effective technique to prepare feedstock. In VIGA, the quality and the morphology of the produced particles are mainly controlled by the gas pressure used during powder production, keeping the setup configuration constant.

Design/methodology/approach

In VIGA process for metallic additive manufacturing feedstock preparation, the quality and morphology of the powder particles are mainly controlled by the gas pressure used during powder production.

Findings

In this study, Inconel-625 feedstock was produced using a supersonic nozzle in a close-coupled gas atomization apparatus. Powder size distribution (PSD) was studied by varying the gas pressure.

Originality/value

The nonmonotonic but deterministic relationships were observed between gas pressure and PSD. It was found that the maximum 15–45 µm percentage PSD, equivalent to 84%, was achieved at 29 bar Argon gas pressure, which is suitable for the LPBF process. Following on, the produced powder particles were used to print tensile test specimens via LPBF along XY- and ZX-orientations by using laser power = 475 W, laser scanning speed = 800 mm/s, powder layer thickness = 50 µm and hatch distance = 100 µm. The yield and tensile strengths were 9.45% and 13% higher than the ZX direction, while the samples printed in ZX direction resulted in 26.79% more elongation compared to XY-orientation.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 May 2022

Abid Ullah, Asif Ur Rehman, Metin Uymaz Salamci, Fatih Pıtır and Tingting Liu

This paper aims to reduce part defects and improve ceramic additive manufacturing (AM). Selective laser melting (SLM) experiments were carried out to explore the effect of laser…

Abstract

Purpose

This paper aims to reduce part defects and improve ceramic additive manufacturing (AM). Selective laser melting (SLM) experiments were carried out to explore the effect of laser power and scanning speed on the microstructure, melting behaviour and surface roughness of cuprous oxide (Cu2O) ceramic.

Design/methodology/approach

The experiments were designed based on varying laser power and scanning speed. The laser power was changed between 50 W and 140 W, and the scanning speed was changed between 170 mm/s and 210 mm/s. Other parameters, such as scanning strategy, layer thickness and hatch spacing, remain constant.

Findings

Laser power and scan speed are the two important laser parameters of great significance in the SLM technique that directly affect the molten state of ceramic powders. The findings reveal that Cu2O part defects are widely controlled by gradually increasing the laser power to 110 W and reducing the scanning speed to 170 mm/s. Furthermore, excessive laser power (>120 W) caused surface roughness, cavities and porous microstructure due to the extremely high energy input of the laser beam.

Originality/value

The SLM technique was used to produce Cu2O ceramic specimens. SLM of oxide ceramic became feasible using a slurry-based approach. The causes of several part defects such as spattering effect, crack initiation and propagation, the formation of porous microstructure, surface roughness and asymmetrical grain growth during the SLM of cuprous oxide (Cu2O) are thoroughly investigated.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 April 2023

Asif Ur Rehman, Kashif Azher, Abid Ullah, Celal Sami Tüfekci and Metin Uymaz Salamci

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes…

263

Abstract

Purpose

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes distribution of the binder droplet over the powder bed after interacting from different heights.

Design/methodology/approach

Additive manufacturing (AM) has revolutionized many industries. Binder jetting (BJT) is a powder-based AM method that enables the production of complex components for a wide range of applications. The pre-densification interaction of binder and powder is vital among various parameters that can affect the BJT performance. In this study, BJT process is studied for the binder interaction with the powder bed of SS316L. The effect of the droplet-powder distance is thoroughly analysed. Two different droplet heights are considered, namely, h1 (zero) and h2 (9.89 mm).

Findings

The capillary and inertial effects are predominant, as the distance affects these parameters significantly. The binder spreading and penetration depth onto the powder bed is influenced directly by the distance of the binder droplet. The former increases with an increase in latter. The binder distribution over the powder bed, whether uniform or not, is studied by the stream traces. The penetration depth of the binder was also observed along the cross-section of the powder bed through the same.

Originality/value

In this work, the authors have developed a more accurate representative discrete element method of the powder bed and CFD analysis of binder droplet spreading and penetration inside the powder bed using Flow-3D. Moreover, the importance of the splashing due to the binder’s droplet height is observed. If splashing occurs, it will produce distortion in the powder, resulting in a void in the final part.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 November 2020

Abid Ullah, HengAn Wu, Asif Ur Rehman, YinBo Zhu, Tingting Liu and Kai Zhang

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the…

Abstract

Purpose

The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed.

Design/methodology/approach

Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment.

Findings

Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens.

Originality/value

TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.

Book part
Publication date: 13 June 2023

Dina El Kayaly

Micro-, small-, and medium-sized enterprise (MSME) sectors have a strong influence on the Egyptian economy. Yet, effective formulation of integrated cluster along the value chain…

Abstract

Micro-, small-, and medium-sized enterprise (MSME) sectors have a strong influence on the Egyptian economy. Yet, effective formulation of integrated cluster along the value chain can lead MSMEs to become international actors in export-oriented activities. An Agro-Industrial Park is an integrated cluster taking into consideration synergetic agglomeration of agribusiness MSMEs assisting in decreasing deprivation of rural territories. This research aims to present the needs of agriculture MSMEs in Egypt, to describe challenges faced by this specific sector, and to set guidelines for a business model integrating small farmers and producers into an integrated agribusiness cluster. The researcher followed purposive/nonprobability sampling technique of 100 MSMEs research participants. A combination of questionnaires and open-ended interviews were the research instruments of choice along with secondary data. This research focused on agribusiness only and specifically MSMEs in Egypt. There is no agribusiness-integrated cluster in Egypt, even though the agricultural land increased significantly in the past 5 years, leading us to believe that it is imperative to develop agribusiness-integrated clusters in the coming few years.

Details

Industry Clusters and Innovation in the Arab World
Type: Book
ISBN: 978-1-80262-872-2

Keywords

Article
Publication date: 11 August 2020

Faheem Ur Rehman, Yibing Ding, Abul Ala Noman and Muhammad Asif Khan

Over the past two decades, China’s outward foreign direct investment (OFDI) has risen remarkably. Whether such an increase affects the Chinese export diversification (ED) is a…

Abstract

Purpose

Over the past two decades, China’s outward foreign direct investment (OFDI) has risen remarkably. Whether such an increase affects the Chinese export diversification (ED) is a significant issue that has surprisingly remained unaddressed. This study aims to explain this issue that how OFDI plays a vital role in symmetric and asymmetric effects on its ED.

Design/methodology/approach

The authors introduce a robust nonlinear autoregressive distributed lag (NARDL) model. Ironically, the purpose of this study is to analyze the symmetric and asymmetric effect of OFDI on ED.

Findings

The authors propose that growing OFDI would be more advantageous to China, rather than the policies of contraction. Therefore, the study provides valuable policy insights to consider the long-run asymmetric momentum given to ED by China’s OFDI.

Originality/value

The results of this study may seem to be an important newsletter for further policy discussion on how China can catch up on the benefits of ED through OFDI.

Details

Journal of Chinese Economic and Foreign Trade Studies, vol. 13 no. 2
Type: Research Article
ISSN: 1754-4408

Keywords

Article
Publication date: 12 January 2021

Faheem Ur Rehman and Abul Ala Noman

China's outward foreign direct investment (OFDI) has risen remarkably over the past two decades. Does such increase affect the sophistication of Chinese exports, is a significant…

Abstract

Purpose

China's outward foreign direct investment (OFDI) has risen remarkably over the past two decades. Does such increase affect the sophistication of Chinese exports, is a significant issue that has surprisingly remained unaddressed? The purpose of this study is to investigate the impact of Chinese OFDI on bilateral export sophistication of China and its OFDI receiving partner countries during 2003–2017 by applying Poisson pseudo-maximum likelihood approach based on gravity model.

Design/methodology/approach

The analysis has been performed for total sample, region-wise grouped sample (Europe and Central Asia, Middle East and North Africa, Latin America and Caribbean, East Asia and Pacific, South Asia, North America and sub-Saharan Africa) and income-wise grouped sample (high income, upper middle income, lower middle income and lower income group sample).

Findings

The results confirmed the significant and positive effect of Chinese OFDI on bilateral export sophistication in total sample, regions-wise and income groups sample.

Originality/value

The study provides a helpful suggestion regarding policy towards achieving more sophistication in export and thus to achieve comparative advantage in trade.

Details

China Finance Review International, vol. 12 no. 1
Type: Research Article
ISSN: 2044-1398

Keywords

1 – 10 of 47