Search results

1 – 5 of 5
Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 3 August 2020

Mostafa Abd-El-Barr, Kalim Qureshi and Bambang Sarif

Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI) optimization techniques. Information processing using Multiple-Valued…

Abstract

Ant Colony Optimization and Particle Swarm Optimization represent two widely used Swarm Intelligence (SI) optimization techniques. Information processing using Multiple-Valued Logic (MVL) is carried out using more than two discrete logic levels. In this paper, we compare two the SI-based algorithms in synthesizing MVL functions. A benchmark consisting of 50,000 randomly generated 2-variable 4-valued functions is used for assessing the performance of the algorithms using the benchmark. Simulation results show that the PSO outperforms the ACO technique in terms of the average number of product terms (PTs) needed. We also compare the results obtained using both ACO-MVL and PSO-MVL with those obtained using Espresso-MV logic minimizer. It is shown that on average, both of the SI-based techniques produced better results compared to those produced by Espresso-MV. We show that the SI-based techniques outperform the conventional direct-cover (DC) techniques in terms of the average number of product terms required.

Open Access
Article
Publication date: 12 July 2023

Alberto Cavazza, Francesca Dal Mas, Paola Paoloni and Martina Manzo

Artificial Intelligence (AI) is a growing technology impacting several business fields. The agricultural sector is facing several challenges, which may be supported by the use of…

3597

Abstract

Purpose

Artificial Intelligence (AI) is a growing technology impacting several business fields. The agricultural sector is facing several challenges, which may be supported by the use of such a new advanced technology. The aim of the paper is to map the state-of-the-art of AI applications in agriculture, their advantages, barriers, implications and the ability to lead to new business models, depicting a future research agenda.

Design/methodology/approach

A structured literature review has been conducted, and 37 contributions have been analyzed and coded using a detailed research framework.

Findings

Findings underline the multiple uses and advantages of AI in agriculture and the potential impacts for farmers and entrepreneurs, even from a sustainability perspective. Several applications and algorithms are being developed and tested, but many barriers arise, starting from the lack of understanding by farmers and the need for global investments. A collaboration between scholars and practitioners is advocated to share best practices and lead to practical solutions and policies. The promising topic of new business models is still under-investigated and deserves more attention from scholars and practitioners.

Originality/value

The paper reports the state-of-the-art of AI in agriculture and its impact on the development of new business models. Several new research avenues have been identified.

Open Access
Article
Publication date: 25 January 2024

Atef Gharbi

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR)…

Abstract

Purpose

The purpose of the paper is to propose and demonstrate a novel approach for addressing the challenges of path planning and obstacle avoidance in the context of mobile robots (MR). The specific objectives and purposes outlined in the paper include: introducing a new methodology that combines Q-learning with dynamic reward to improve the efficiency of path planning and obstacle avoidance. Enhancing the navigation of MR through unfamiliar environments by reducing blind exploration and accelerating the convergence to optimal solutions and demonstrating through simulation results that the proposed method, dynamic reward-enhanced Q-learning (DRQL), outperforms existing approaches in terms of achieving convergence to an optimal action strategy more efficiently, requiring less time and improving path exploration with fewer steps and higher average rewards.

Design/methodology/approach

The design adopted in this paper to achieve its purposes involves the following key components: (1) Combination of Q-learning and dynamic reward: the paper’s design integrates Q-learning, a popular reinforcement learning technique, with dynamic reward mechanisms. This combination forms the foundation of the approach. Q-learning is used to learn and update the robot’s action-value function, while dynamic rewards are introduced to guide the robot’s actions effectively. (2) Data accumulation during navigation: when a MR navigates through an unfamiliar environment, it accumulates experience data. This data collection is a crucial part of the design, as it enables the robot to learn from its interactions with the environment. (3) Dynamic reward integration: dynamic reward mechanisms are integrated into the Q-learning process. These mechanisms provide feedback to the robot based on its actions, guiding it to make decisions that lead to better outcomes. Dynamic rewards help reduce blind exploration, which can be time-consuming and inefficient and promote faster convergence to optimal solutions. (4) Simulation-based evaluation: to assess the effectiveness of the proposed approach, the design includes a simulation-based evaluation. This evaluation uses simulated environments and scenarios to test the performance of the DRQL method. (5) Performance metrics: the design incorporates performance metrics to measure the success of the approach. These metrics likely include measures of convergence speed, exploration efficiency, the number of steps taken and the average rewards obtained during the robot’s navigation.

Findings

The findings of the paper can be summarized as follows: (1) Efficient path planning and obstacle avoidance: the paper’s proposed approach, DRQL, leads to more efficient path planning and obstacle avoidance for MR. This is achieved through the combination of Q-learning and dynamic reward mechanisms, which guide the robot’s actions effectively. (2) Faster convergence to optimal solutions: DRQL accelerates the convergence of the MR to optimal action strategies. Dynamic rewards help reduce the need for blind exploration, which typically consumes time and this results in a quicker attainment of optimal solutions. (3) Reduced exploration time: the integration of dynamic reward mechanisms significantly reduces the time required for exploration during navigation. This reduction in exploration time contributes to more efficient and quicker path planning. (4) Improved path exploration: the results from the simulations indicate that the DRQL method leads to improved path exploration in unknown environments. The robot takes fewer steps to reach its destination, which is a crucial indicator of efficiency. (5) Higher average rewards: the paper’s findings reveal that MR using DRQL receive higher average rewards during their navigation. This suggests that the proposed approach results in better decision-making and more successful navigation.

Originality/value

The paper’s originality stems from its unique combination of Q-learning and dynamic rewards, its focus on efficiency and speed in MR navigation and its ability to enhance path exploration and average rewards. These original contributions have the potential to advance the field of mobile robotics by addressing critical challenges in path planning and obstacle avoidance.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 29 July 2020

Mahmood Al-khassaweneh and Omar AlShorman

In the big data era, image compression is of significant importance in today’s world. Importantly, compression of large sized images is required for everyday tasks; including…

Abstract

In the big data era, image compression is of significant importance in today’s world. Importantly, compression of large sized images is required for everyday tasks; including electronic data communications and internet transactions. However, two important measures should be considered for any compression algorithm: the compression factor and the quality of the decompressed image. In this paper, we use Frei-Chen bases technique and the Modified Run Length Encoding (RLE) to compress images. The Frei-Chen bases technique is applied at the first stage in which the average subspace is applied to each 3 × 3 block. Those blocks with the highest energy are replaced by a single value that represents the average value of the pixels in the corresponding block. Even though Frei-Chen bases technique provides lossy compression, it maintains the main characteristics of the image. Additionally, the Frei-Chen bases technique enhances the compression factor, making it advantageous to use. In the second stage, RLE is applied to further increase the compression factor. The goal of using RLE is to enhance the compression factor without adding any distortion to the resultant decompressed image. Integrating RLE with Frei-Chen bases technique, as described in the proposed algorithm, ensures high quality decompressed images and high compression rate. The results of the proposed algorithms are shown to be comparable in quality and performance with other existing methods.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Only Open Access

Year

Last 6 months (5)

Content type

1 – 5 of 5